Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur Arch Otorhinolaryngol ; 280(9): 4261-4269, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37256344

RESUMEN

PURPOSE: The aim of this study was to evaluate whether sleep deprivation can induce degenerative changes in rat sublingual glands. METHODS: For this purpose, a total of 24 males were distributed into three groups: control (n = 8), in which the animals were not subjected to any procedure; sleep deprivation (n = 8) in which the animals were submitted to sleep deprivation for 96 h; recovery (n = 8), in which the animals were subjected to paradoxical sleep deprivation for 96 consecutive hours followed by 96 h without intervention. Morphological changes in sublingual glands as well as the immunoexpressions of some proteins, such as Ki-67, p16, cleaved caspase-3 and BCL-2 were investigated in this setting. RESULTS: The results showed that paradoxical sleep deprivation induced tissue degeneration as a result of the presence of pyknosis, vacuoles and areas of salivary retention, in the experimental groups. Expression of cleaved caspase 3 and BCL-2 were increased in both sleep deprivation and recovery groups. The analysis of Ki-67 showed an increase in expression only in the recovery group, associated with a decrease in p16 levels. CONCLUSION: Sleep deprivation can induce a degenerative process in the parenchyma of sublingual gland by means of dysregulation of apoptosis associated with proliferative activity.


Asunto(s)
Privación de Sueño , Glándula Sublingual , Ratas , Animales , Masculino , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Ratas Wistar , Glándula Sublingual/metabolismo , Sueño REM , Antígeno Ki-67
2.
BMC Res Notes ; 14(1): 363, 2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34538274

RESUMEN

OBJECTIVE: Neuroscience research using laboratory animals has increased over the years for a number of reasons. Some of these studies require the use of anesthetics for surgical procedures. However, the use of anesthetics promotes several physiological changes that may interfere with experimental results. Although the anesthetics and methods of delivery used to vary, one of the most common is ketamine associated with another compound such as xylazine. We aimed to evaluate the effect of ketamine and xylazine (KX) on corticosterone levels and on the degree of phosphorylation of p44/42 (ERK1/2), Src kinases and calcium/calmodulin-dependent kinase II (CAMKII). We also compared the effects of KX on sleep deprivation, which is known to affect the hormonal profile including corticosterone. RESULTS: We found that the use of KX can increase corticosterone levels and alter the degree of phosphorylation of signaling proteins.


Asunto(s)
Anestesia , Ketamina , Animales , Corticosterona , Ketamina/farmacología , Fosforilación , Xilazina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...