RESUMEN
Faecal Microbiota Transplantation (FMT) is a promising strategy for modulating the gut microbiome. We aimed to assess the effect of the oral administration of capsules containing lyophilised faeces on dogs with diarrhoea for 2 months as well as evaluate their long-term influence on animals' faecal consistency and intestinal microbiome. This pilot study included five dogs: two used as controls and three with diarrhoea. Animals were evaluated for four months by performing a monthly faecal samples collection and physical examination, which included faecal consistency determination using the Bristol scale. The total number of viable bacteria present in the capsules was quantified and their bacterial composition was determined by 16S rRNA gene sequencing, which was also applied to the faecal samples. During the assay, no side effects were reported. Animals' faecal consistency improved and, after ending capsules administration, Bristol scale values remained stable in two of the three animals. The animals' microbiome gradually changed toward a composition associated with a balanced microbiota. After FMT, a slight shift was observed in its composition, but the capsules' influence remained evident during the 4-month period. Capsules administration seems to have a positive effect on the microbiota modulation; however, studies with more animals should be performed to confirm our observations.
Asunto(s)
Microbioma Gastrointestinal , Perros , Animales , Proyectos Piloto , ARN Ribosómico 16S/genética , Heces , DiarreaRESUMEN
INTRODUCTION: Macrocyclic diterpenes from Euphorbia species were found to be promising modulators of multidrug resistance (MDR), a complex phenomenon that hampers the effectiveness of cancer therapy. OBJECTIVE: To find new effective MDR reversers through the phytochemical study of E. boetica, including isolation and molecular derivatisation. MATERIAL AND METHODS: The phytochemical study of E. boetica was performed through chromatographic techniques. Preliminary analysis of crude chromatographic fractions from the methanol extract was carried out by 1 H-NMR in order to prioritise the study of those having macrocyclic diterpenes. Polyamide resin was used to remove chlorophylls. Molecular derivatisation of isolated compounds comprised hydrolysis, reduction and acylation reactions. The structural identification of compounds was performed through analysis of spectroscopic data, mainly one-dimensional- and two-dimensional-NMR. The MDR reversing activity was assessed using a combination of transport and chemosensitivity assays, in mouse lymphoma (L5178Y-MDR) and Colo320 cell models. RESULTS: The 1 H-NMR study of crude fractions and application of a straightforward method to remove chlorophylls, allowed the effortless isolation of two lathyrane-type diterpenes in large amounts, including the new polyester, euphoboetirane B (1). Taking advantage of the chemical functions of 1, 13 new derivatives were prepared. Several compounds showed to be promising modulators of P-glycoprotein (P-gp), in resistant cancer cells. Most of the compounds tested revealed to interact synergistically with doxorubicin. CONCLUSION: These results corroborate the importance of macrocyclic lathyrane diterpenes as effective lead compounds for the reversal of MDR.