Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Intervalo de año de publicación
1.
Mol Cell Neurosci ; 122: 103757, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843531

RESUMEN

Alpha-synuclein aggregation is a hallmark of Parkinson's disease (PD). Mutants A30P and A53T alpha-synuclein are known to exacerbate the toxicity of alpha-synuclein, which includes oxidative stress, mitochondrial and endoplasmic reticulum (ER) dysfunction. Saccharomyces cerevisiae (budding yeast) is a cellular model widely used to investigate mechanisms underlying neurodegenerative disorders, such as PD. In yeast, Gem1 (Miro/Rhot mammalian orthologue) coordinates mitochondrial dynamics and ER homeostasis, which is impaired in the presence of mutant alpha-synuclein and can lead to cell death. In this study, A30P or A53T alpha-synuclein were expressed in wild type or ΔGem (deletion of Gem1 gene) yeast strains. ΔGem cells presented decreased viability and increased mitochondrial H2O2 production and ER stress compared to wild type cells. However, in the presence of mutant alpha-synuclein, ΔGem cells showed increased growth compared to cells that do not express mutant alpha-synuclein. ΔGem cells expressing A53T alpha-synuclein also presented reduced ER stress and increased ability to deal with oxidative stress. Together, our results suggest that deletion of Gem1 activates pathways that strengthen cells against other stressful agents such as the presence of mutant alpha-synuclein.


Asunto(s)
Enfermedad de Parkinson , Proteínas de Saccharomyces cerevisiae , Animales , Retículo Endoplásmico/metabolismo , Peróxido de Hidrógeno , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
FEMS Yeast Res ; 21(7)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34755843

RESUMEN

Coenzyme Q (CoQ) is an essential molecule that consists of a highly substituted benzene ring attached to a polyprenyl tail anchored in the inner mitochondrial membrane. CoQ transfers electrons from NADH dehydrogenase and succinate dehydrogenase complexes toward ubiquinol-cytochrome c reductase, and that allows aerobic growth of cells. In Saccharomyces cerevisiae, the synthesis of CoQ depends on fourteen proteins Coq1p-Co11p, Yah1p, Arh1p, and Hfd1p. Some of these proteins are components of CoQ synthome. Using ab initio molecular modeling and site-directed mutagenesis, we identified the functional residues of the O-methyltransferase Coq3p, which depends on S-adenosylmethionine for catalysis and is necessary for two O-methylation steps required for CoQ maturation. Conserved residues as well as those that coevolved in the protein structure were found to have important roles in respiratory growth, CoQ biosynthesis, and also in the stability of CoQ synthome proteins. Finally, a multiple sequence alignment showed that S. cerevisiae Coq3p has a 45 amino acid residues insertion that is poorly conserved or absent in oleaginous yeast, cells that can store up to 20% of their dry weight as lipids. These results point to the Coq3p structural determinants of its biological and catalytic function and could contribute to the development of lipid-producing yeast for biotechnology.


Asunto(s)
Metiltransferasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Membranas Mitocondriales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Vis Exp ; (173)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34338670

RESUMEN

Despite recent advances in the characterization of yeast mitochondrial proteome, the submitochondrial localization of a significant number of proteins remains elusive. Here, we describe a robust and effective method for determining the suborganellar localization of yeast mitochondrial proteins, which is considered a fundamental step during mitochondrial protein function elucidation. This method involves an initial step that consists of obtaining highly pure intact mitochondria. These mitochondrial preparations are then subjected to a subfractionation protocol consisting of hypotonic shock (swelling) and incubation with proteinase K (protease). During swelling, the outer mitochondrial membrane is selectively disrupted, allowing the proteinase K to digest proteins of the intermembrane space compartment. In parallel, to obtain information about the topology of membrane proteins, the mitochondrial preparations are initially sonicated, and then subjected to alkaline extraction with sodium carbonate. Finally, after centrifugation, the pellet and supernatant fractions from these different treatments are analyzed by SDS-PAGE and western blot. The submitochondrial localization as well as the membrane topology of the protein of interest is obtained by comparing its western blot profile with known standards.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Fúngicas/metabolismo , Mitocondrias , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Antioxid Redox Signal ; 35(12): 1016-1080, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33726509

RESUMEN

Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.


Asunto(s)
Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Oxidación-Reducción , Transducción de Señal
5.
Biophys Rev ; 13(6): 983-994, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35059022

RESUMEN

Peroxiredoxins (Prxs) are cysteine-based peroxidases that play a central role in keeping the H2O2 at physiological levels. Eukaryotic cells express different Prxs isoforms, which differ in their subcellular locations and substrate specificities. Mitochondrial Prxs are synthesized in the cytosol as precursor proteins containing N-terminal cleavable presequences that act as mitochondrial targeting signals. Due to the fact that presequence controls the import of the vast majority of mitochondrial matrix proteins, the mitochondrial Prxs were initially predicted to be localized exclusively in the matrix. However, recent studies showed that mitochondrial Prxs are also targeted to the intermembrane space by mechanisms that remain poorly understood. While in yeast the IMP complex can translocate Prx1 to the intermembrane space, the maturation of yeast Prx1 and mammalian Prdx3 and Prdx5 in the matrix has been associated with sequential cleavages of the presequence by MPP and Oct1/MIP proteases. In this review, we describe the state of the art of the molecular mechanisms that control the mitochondrial import and maturation of Prxs of yeast and human cells. Once mitochondria are considered the major intracellular source of H2O2, understanding the mitochondrial Prx biogenesis pathways is essential to increase our knowledge about the H2O2-dependent cellular signaling, which is relevant to the pathophysiology of some human diseases.

6.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817098

RESUMEN

Multidrug resistance (MDR) is a serious threat to public health, making the development of new antimicrobials an urgent necessity. Pyocins are protein antibiotics produced by Pseudomonas aeruginosa strains to kill closely related cells during intraspecific competition. Here, we report an in-depth biochemical, microbicidal, and structural characterization of a new S-type pyocin, named S8. Initially, we described the domain organization and secondary structure of S8. Subsequently, we observed that a recombinant S8 composed of the killing subunit in complex with the immunity (ImS8) protein killed the strain PAO1. Furthermore, mutation of a highly conserved glutamic acid to alanine (Glu100Ala) completely inhibited this antimicrobial activity. The integrity of the H-N-H motif is probably essential in the killing activity of S8, as Glu100 is a highly conserved residue of this motif. Next, we observed that S8 is a metal-dependent endonuclease, as EDTA treatment abolished its ability to cleave supercoiled pUC18 plasmid. Supplementation of apo S8 with Ni2+ strongly induced this DNase activity, whereas Mn2+ and Mg2+ exhibited moderate effects and Zn2+ was inhibitory. Additionally, S8 bound Zn2+ with a higher affinity than Ni2+ and the Glu100Ala mutation decreased the affinity of S8 for these metals, as shown by isothermal titration calorimetry (ITC). Finally, we describe the crystal structure of the Glu100Ala S8 DNase-ImS8 complex at 1.38 Å, which gave us new insights into the endonuclease activity of S8. Our results reinforce the possibility of using pyocin S8 as an alternative therapy for infections caused by MDR strains, while leaving commensal human microbiota intact.IMPORTANCE Pyocins are proteins produced by Pseudomonas aeruginosa strains that participate in intraspecific competition and host-pathogen interactions. They were first described in the 1950s and since then have gained attention as possible new antibiotics. However, there is still only scarce information about the molecular mechanisms by which these molecules induce cell death. Here, we show that the metal-dependent endonuclease activity of pyocin S8 is involved with its antimicrobial action against strain PAO1. We also describe that this killing activity is dependent on a conserved Glu residue within the H-N-H motif. The potency and selectivity of pyocin S8 toward a narrow spectrum of P. aeruginosa strains make this protein an attractive antimicrobial alternative for combatting MDR strains, while leaving commensal human microbiota intact.


Asunto(s)
Antibacterianos/química , Desoxirribonucleasa I/química , Pseudomonas aeruginosa/metabolismo , Piocinas/química , Secuencias de Aminoácidos , Ácido Glutámico/química , Relación Estructura-Actividad
7.
Antioxidants (Basel) ; 9(4)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218363

RESUMEN

Protein S-nitrosation is an important consequence of NO●·metabolism with implications in physiology and pathology. The mechanisms responsible for S-nitrosation in vivo remain debatable and kinetic data on protein S-nitrosation by different agents are limited. 2-Cys peroxiredoxins, in particular Prx1 and Prx2, were detected as being S-nitrosated in multiple mammalian cells under a variety of conditions. Here, we investigated the kinetics of Prx1 S-nitrosation by nitrosoglutathione (GSNO), a recognized biological nitrosating agent, and by the dinitrosyl-iron complex of glutathione (DNIC-GS; [Fe(NO)2(GS)2]-), a hypothetical nitrosating agent. Kinetics studies following the intrinsic fluorescence of Prx1 and its mutants (C83SC173S and C52S) were complemented by product analysis; all experiments were performed at pH 7.4 and 25 ℃. The results show GSNO-mediated nitrosation of Prx1 peroxidatic residue ( k + N O C y s 52 = 15.4 ± 0.4 M-1. s-1) and of Prx1 Cys83 residue ( k + N O C y s 83 = 1.7 ± 0.4 M-1. s-1). The reaction of nitrosated Prx1 with GSH was also monitored and provided a second-order rate constant for Prx1Cys52NO denitrosation of k - N O C y s 52 = 14.4 ± 0.3 M-1. s-1. In contrast, the reaction of DNIC-GS with Prx1 did not nitrosate the enzyme but formed DNIC-Prx1 complexes. The peroxidatic Prx1 Cys was identified as the residue that more rapidly replaces the GS ligand from DNIC-GS ( k D N I C C y s 52 = 7.0 ± 0.4 M-1. s-1) to produce DNIC-Prx1 ([Fe(NO)2(GS)(Cys52-Prx1)]-). Altogether, the data showed that in addition to S-nitrosation, the Prx1 peroxidatic residue can replace the GS ligand from DNIC-GS, forming stable DNIC-Prx1, and both modifications disrupt important redox switches.

8.
J Biol Chem ; 294(38): 14055-14067, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366734

RESUMEN

2-Cys peroxiredoxins (Prxs) rapidly reduce H2O2, thereby acting as antioxidants and also as sensors and transmitters of H2O2 signals in cells. Interestingly, eukaryotic 2-Cys Prxs lose their peroxidase activity at high H2O2 levels. Under these conditions, H2O2 oxidizes the sulfenic acid derivative of the Prx peroxidatic Cys (CPSOH) to the sulfinate (CPSO2-) and sulfonated (CPSO3-) forms, redirecting the CPSOH intermediate from the catalytic cycle to the hyperoxidation/inactivation pathway. The susceptibility of 2-Cys Prxs to hyperoxidation varies greatly and depends on structural features that affect the lifetime of the CPSOH intermediate. Among the human Prxs, Prx1 has an intermediate susceptibility to H2O2 and was selected here to investigate the effect of a physiological concentration of HCO3-/CO2 (25 mm) on its hyperoxidation. Immunoblotting and kinetic and MS/MS experiments revealed that HCO3-/CO2 increases Prx1 hyperoxidation and inactivation both in the presence of excess H2O2 and during enzymatic (NADPH/thioredoxin reductase/thioredoxin) and chemical (DTT) turnover. We hypothesized that the stimulating effect of HCO3-/CO2 was due to HCO4-, a peroxide present in equilibrated solutions of H2O2 and HCO3-/CO2 Indeed, additional experiments and calculations uncovered that HCO4- oxidizes CPSOH to CPSO2- with a second-order rate constant 2 orders of magnitude higher than that of H2O2 ((1.5 ± 0.1) × 105 and (2.9 ± 0.2) × 103 m-1·s-1, respectively) and that HCO4- is 250 times more efficient than H2O2 at inactivating 1% Prx1 per turnover. The fact that the biologically ubiquitous HCO3-/CO2 pair stimulates Prx1 hyperoxidation and inactivation bears relevance to Prx1 functions beyond its antioxidant activity.


Asunto(s)
Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Secuencia de Aminoácidos , Antioxidantes/química , Antioxidantes/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálisis , Cisteína/química , Cisteína/metabolismo , Humanos , Cinética , NADP/química , NADP/metabolismo , Oxidación-Reducción , Peróxidos/metabolismo , Espectrometría de Masas en Tándem/métodos
9.
Arch Biochem Biophys ; 666: 63-72, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30940569

RESUMEN

In addition to autophagy, proteasomes are critical for regulating intracellular protein levels and removing misfolded proteins. The 20S proteasome (20SPT), the central catalytic unit, is sometimes flanked by regulatory units at one or both ends. Additionally, proteosomal activation has been associated with increased lifespan in many organisms. Our group previously reported that the gating (open/closed) of the free 20S proteasome is redox controlled, and that S-glutathionylation of two Cys residues (Cys76 and Cys221) in the α5 subunit promotes gate opening. The present study constructed site-directed mutants of these Cys residues, and evaluated the effects these mutations have on proteosome gate opening and yeast cell survival. Notably, the double mutation of both Cys residues (Cys76 and Cys221) rendered the cells nonviable, whereas the lifespan of the yeast carrying the single mutations (α5-C76S or α5-C221S) was attenuated when compared to the wild type counterpart. Furthermore, it was found that α5-C76S or α5-C221S 20SPT were more likely to be found with the gate in a closed conformation. In contrast, a random α5-subunit double mutation (S35P/C221S) promoted gate opening, increased chronological lifespan and provided resistance to oxidative stress. The 20SPT core particle purified from the long-lived strain degraded model proteins (e.g., α-synuclein) more efficiently than preparations obtained from the wild-type counterpart, and also displayed an increased chymotrypsin-like activity. Mass spectrometric analyses of the C76S, C221S, S35P/C221S, S35P and S35P/C76S mutants provided evidence that the highly conserved Cys76 residue of the α5-subunit is the key determinant for gate opening and cellular survival. The present study reveals a sophisticated regulatory mechanism that controls gate opening, which appears to be based on the interactions among multiple residues within the α5-subunit, and consequently impacts the lifespan of yeast.


Asunto(s)
Cisteína/genética , Longevidad , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Serina/genética , Glutatión/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Free Radic Biol Med ; 130: 369-378, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391677

RESUMEN

Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Oxidantes/metabolismo , Peroxiredoxina III/genética , Peroxirredoxinas/genética , Dióxido de Carbono/metabolismo , Cisteína/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Cinética , Oxidación-Reducción , Peroxiredoxina III/metabolismo , Ácido Peroxinitroso/metabolismo , Procesamiento Proteico-Postraduccional/genética , Transducción de Señal/genética
11.
Neurotox Res ; 35(2): 410-420, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30276717

RESUMEN

Proteostasis and oxidative stress were evaluated in motor cortex and spinal cord of aged Lewis rats exposed to 1 mg/kg/day of rotenone during 4 or 8 weeks, prior or after practicing three protocols of mild treadmill running. Results demonstrated that exercise done after the beginning of neurodegeneration reverted the increased oxidative stress (measured by H2O2 levels and SOD activity), increased neuron strength, and improved proteostasis in motor cortex. Spinal cord was not affected. Treadmill running practiced before neurodegeneration protected cortical motor neurons of the rotenone-exposed rats; but in this case, oxidative stress was not altered, whereas proteasome activity was increased and autophagy decreased. Spinal cord was not protected when exercise was practiced before neurodegeneration. Prolonged treadmill running (10 weeks) increased oxidative stress, autophagy, and proteasome activity, whereas neuron viability was decreased in motor cortex. In spinal cord, this protocol decreased oxidative stress and increased proteasome activity. Major conclusions were that treadmill running practiced before or after the beginning of neurodegeneration may protect motor cortex neurons, whereas prolonged mild running seems to be beneficial for spinal cord.


Asunto(s)
Prueba de Esfuerzo/métodos , Corteza Motora/metabolismo , Degeneración Nerviosa/metabolismo , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Proteostasis/fisiología , Animales , Insecticidas/toxicidad , Masculino , Corteza Motora/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/terapia , Estrés Oxidativo/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Proteostasis/efectos de los fármacos , Ratas , Ratas Endogámicas Lew , Rotenona/toxicidad
12.
Arterioscler Thromb Vasc Biol ; 39(2): 224-236, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30580571

RESUMEN

Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.


Asunto(s)
Disulfuros/química , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasas/química , Proteína Disulfuro Isomerasas/química , Animales , Movimiento Celular , Células Cultivadas , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Oxidación-Reducción , Superóxidos/metabolismo
13.
PLoS One ; 13(12): e0208316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30521599

RESUMEN

ß-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by an absent or reduced beta globin chain synthesis. The unbalance of alpha-gamma chain and the presence of pathological free iron promote severe oxidative damage, playing crucial a role in erythrocyte hemolysis, exacerbating ineffective erythropoiesis and decreasing the lifespan of red blood cells (RBC). Catalase, glutathione peroxidase and peroxiredoxins act together to protect RBCs from hydrogen peroxide insult. Among them, peroxiredoxins stand out for their overall abundance and reactivity. In RBCs, Prdx2 is the third most abundant protein, although Prdxs 1 and 6 isoforms are also found in lower amounts. Despite the importance of these enzymes, Prdx1 and Prdx2 may have their peroxidase activity inactivated by hyperoxidation at high hydroperoxide concentrations, which also promotes the molecular chaperone activity of these proteins. Some studies have demonstrated the importance of Prdx1 and Prdx2 for the development and maintenance of erythrocytes in hemolytic anemia. Now, we performed a global analysis comparatively evaluating the expression profile of several antioxidant enzymes and their physiological reducing agents in patients with beta thalassemia intermedia (BTI) and healthy individuals. Furthermore, increased levels of ROS were observed not only in RBC, but also in neutrophils and mononuclear cells of BTI patients. The level of transcripts and the protein content of Prx1 were increased in reticulocyte and RBCs of BTI patients and the protein content was also found to be higher when compared to beta thalassemia major (BTM), suggesting that this peroxidase could cooperate with Prx2 in the removal of H2O2. Furthermore, Prdx2 production is highly increased in RBCs of BTM patients that present high amounts of hyperoxidized species. A significant increase in the content of Trx1, Srx1 and Sod1 in RBCs of BTI patients suggested protective roles for these enzymes in BTI patients. Finally, the upregulation of Nrf2 and Keap1 transcription factors found in BTI patients may be involved in the regulation of the antioxidant enzymes analyzed in this work.


Asunto(s)
Células Eritroides/metabolismo , Peroxirredoxinas/metabolismo , Talasemia beta/metabolismo , Talasemia beta/patología , Adolescente , Adulto , Western Blotting , Niño , Preescolar , Eritrocitos/citología , Eritrocitos/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Neutrófilos/citología , Neutrófilos/metabolismo , Oxidación-Reducción , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
14.
Sci Rep ; 8(1): 12314, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120327

RESUMEN

Standing among the front defense strategies against pathogens, host phagocytic cells release various oxidants. Therefore, pathogens have to cope with stressful conditions at the site of infection. Peroxiredoxins (Prx) are highly reactive and abundant peroxidases that can support virulence and persistence of pathogens in distinct hosts. Here, we revealed that the opportunistic human pathogen A. fumigatus presents three 1-Cys Prx (Prx6 subfamily), which is unprecedented. We showed that PrxB and PrxC were in mitochondria, while Prx1 was in cytosol. As observed for other Prxs, recombinant Prx1 and PrxC decomposed H2O2 at elevated velocities (rate constants in the 107 M-1s-1 range). Deletion mutants for each Prx displayed higher sensitivity to oxidative challenge in comparison with the wild-type strain. Additionally, cytosolic Prx1 was important for A. fumigatus survival upon electron transport dysfunction. Expression of Prxs was dependent on the SakAHOG1 MAP kinase and the Yap1YAP1 transcription factor, a global regulator of the oxidative stress response in fungi. Finally, cytosolic Prx1 played a major role in pathogenicity, since it is required for full virulence, using a neutropenic mouse infection model. Our data indicate that the three 1-Cys Prxs act together to maintain the redox balance of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Subunidad p40 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Estimación de Kaplan-Meier , Cinética , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Peroxidasa , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
15.
PLoS One ; 13(5): e0196918, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29782551

RESUMEN

Organic hydroperoxide resistance (Ohr) enzymes are highly efficient Cys-based peroxidases that play central roles in bacterial response to fatty acid hydroperoxides and peroxynitrite, two oxidants that are generated during host-pathogen interactions. In the active site of Ohr proteins, the conserved Arg (Arg19 in Ohr from Xylella fastidiosa) and Glu (Glu51 in Ohr from Xylella fastidiosa) residues, among other factors, are involved in the extremely high reactivity of the peroxidatic Cys (Cp) toward hydroperoxides. In the closed state, the thiolate of Cp is in close proximity to the guanidinium group of Arg19. Ohr enzymes can also assume an open state, where the loop containing the catalytic Arg is far away from Cp and Glu51. Here, we aimed to gain insights into the putative structural switches of the Ohr catalytic cycle. First, we describe the crystal structure of Ohr from Xylella fastidiosa (XfOhr) in the open state that, together with the previously described XfOhr structure in the closed state, may represent two snapshots along the coordinate of the enzyme-catalyzed reaction. These two structures were used for the experimental validation of molecular dynamics (MD) simulations. MD simulations employing distinct protonation states and in silico mutagenesis indicated that the polar interactions of Arg19 with Glu51 and Cp contributed to the stabilization of XfOhr in the closed state. Indeed, Cp oxidation to the disulfide state facilitated the switching of the Arg19 loop from the closed to the open state. In addition to the Arg19 loop, other portions of XfOhr displayed high mobility, such as a loop rich in Gly residues. In summary, we obtained a high correlation between crystallographic data, MD simulations and biochemical/enzymatic assays. The dynamics of the Ohr enzymes are unique among the Cys-based peroxidases, in which the active site Arg undergoes structural switches throughout the catalytic cycle, while Cp remains relatively static.


Asunto(s)
Proteínas Bacterianas/química , Peróxido de Hidrógeno/química , Peroxidasas/química , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Oxidación-Reducción , Estructura Secundaria de Proteína , Xylella/enzimología
16.
Anal Chem ; 90(4): 2587-2593, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29345916

RESUMEN

Peroxiredoxins (Prx) are important proteins involved in hydroperoxide degradation and are related to virulence in several pathogens, including Aspergillus fumigatus. In this work, in vivo studies on the degradation of hydrogen peroxide (H2O2) in the microenvironment of A. fumigatus fungus were performed by using an integrated Pt microelectrode. Three A. fumigatus strains were used to confirm the role of the cytosolic protein Prx1 in the defense mechanism of this microorganism: a wild-type strain, capable to expressing the protein Prx1; a Δprx strain, whose gene prx1 was removed; and a genetically complemented Δprx1::prx1+ strain generated from the Δprx1 and in which the gene prx1 was reintroduced. The fabricated microelectrode was shown to be a reliable inert probe tip for in situ and real-time measurements of H2O2 in such microenvironments, with potential applications in investigations involving the mechanism of oxidative stress.


Asunto(s)
Aspergillus fumigatus/química , Peróxido de Hidrógeno/análisis , Peroxirredoxinas/metabolismo , Platino (Metal)/química , Aspergillus fumigatus/citología , Aspergillus fumigatus/enzimología , Supervivencia Celular , Técnicas Electroquímicas , Peróxido de Hidrógeno/metabolismo , Microelectrodos , Estrés Oxidativo , Peroxirredoxinas/química , Peroxirredoxinas/genética
17.
J Sports Sci ; 36(12): 1363-1370, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28895489

RESUMEN

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.


Asunto(s)
Enfermedades Neurodegenerativas/fisiopatología , Condicionamiento Físico Animal , Carrera , Sustancia Negra/patología , Animales , Autofagia , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Masculino , Mitofagia , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Endogámicas Lew , Rotenona/toxicidad , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
18.
J Biol Chem ; 292(41): 17011-17024, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28821623

RESUMEN

Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H2O2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes.


Asunto(s)
Metaloproteasas/metabolismo , Mitocondrias/enzimología , Peroxidasas/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Humanos , Metaloproteasas/genética , Mitocondrias/genética , Peroxidasas/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
J Biol Chem ; 292(17): 7023-7039, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28292930

RESUMEN

Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.


Asunto(s)
Calcio/metabolismo , Leishmania/metabolismo , Magnesio/metabolismo , Proteínas Mitocondriales/metabolismo , Peroxirredoxinas/metabolismo , Proteínas Protozoarias/metabolismo , Anisotropía , Cromatografía , Disulfuros/química , Fluorometría , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Luz , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxígeno/química , Multimerización de Proteína , Dispersión de Radiación , Temperatura
20.
Artículo en Inglés | MEDLINE | ID: mdl-28242657

RESUMEN

A novel transposon belonging to the Tn3-like family was identified on the chromosome of a commensal strain of Pseudomonas aeruginosa sequence type 2343 (ET02). Tn6350 is 7,367 bp long and harbors eight open reading frames (ORFs), an ATPase (IS481 family), a transposase (DDE catalytic type), a Tn3 resolvase, three hypothetical proteins, and genes encoding the new pyocin S8 with its immunity protein. We show that pyocin S8 displays activity against carbapenemase-producing P. aeruginosa, including IMP-1, SPM-1, VIM-1, GES-5, and KPC-2 producers.


Asunto(s)
Elementos Transponibles de ADN/genética , Pseudomonas aeruginosa/genética , Piocinas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , beta-Lactamasas/biosíntesis , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA