Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38416199

RESUMEN

In Parkinson's disease (PD), impaired gait and cognition affect daily activities, particularly in the more advanced stages of the disease. This study investigated the relationship between gait parameters, cognitive performance, and brain morphology in patients with early untreated PD. 64 drug-naive PD patients and 47 healthy controls (HC) participated in the study. Single- and dual-task gait (counting task) were examined using an expanded Timed Up & Go Test measured on a GaitRite walkway. Measurements included gait speed, stride length, and cadence. A brain morphometry analysis was performed on T1-weighted magnetic resonance (MR) images. In PD patients compared to HC, gait analysis revealed reduced speed (p < 0.001) and stride length (p < 0.001) in single-task gait, as well as greater dual-task cost (DTC) for speed (p = 0.007), stride length (p = 0.014) and cadence (p = 0.029). Based on the DTC measures in HC, PD patients were further divided into two subgroups with normal DTC (PD-nDTC) and abnormally increased DTC (PD-iDTC). For PD-nDTC, voxel-based morphometric correlation analysis revealed a positive correlation between a cluster in the left primary motor cortex and stride-length DTC (r = 0.57, p = 0.027). For PD-iDTC, a negative correlation was found between a cluster in the right lingual gyrus and the DTC for gait cadence (r=-0.35, pFWE = 0.018). No significant correlations were found in HC. The associations found between brain morphometry and gait performance with a concurrent cognitive task may represent the substrate for gait and cognitive impairment occurring since the early stages of PD.

2.
Biomed Eng Online ; 23(1): 13, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297359

RESUMEN

BACKGROUND: Turning in place is a challenging motor task and is used as a brief assessment test of lower limb function and dynamic balance. This review aims to examine how research of instrumented analysis of turning in place is implemented. In addition to reporting the studied population, we covered acquisition systems, turn detection methods, quantitative parameters, and how these parameters are computed. METHODS: Following the development of a rigorous search strategy, the Web of Science and Scopus were systematically searched for studies involving the use of turning-in-place. From the selected articles, the study population, types of instruments used, turn detection method, and how the turning-in-place characteristics were calculated. RESULTS: Twenty-one papers met the inclusion criteria. The subject groups involved in the reviewed studies included young, middle-aged, and older adults, stroke, multiple sclerosis and Parkinson's disease patients. Inertial measurement units (16 studies) and motion camera systems (5 studies) were employed for gathering measurement data, force platforms were rarely used (2 studies). Two studies used commercial software for turn detection, six studies referenced previously published algorithms, two studies developed a custom detector, and eight studies did not provide any details about the turn detection method. The most frequently used parameters were mean angular velocity (14 cases, 7 studies), turn duration (13 cases, 13 studies), peak angular velocity (8 cases, 8 studies), jerkiness (6 cases, 5 studies) and freezing-of-gait ratios (5 cases, 5 studies). Angular velocities were derived from sensors placed on the lower back (7 cases, 4 studies), trunk (4 cases, 2 studies), and shank (2 cases, 1 study). The rest (9 cases, 8 studies) did not report sensor placement. Calculation of the freezing-of-gait ratio was based on the acceleration of the lower limbs in all cases. Jerkiness computation employed acceleration in the medio-lateral (4 cases) and antero-posterior (1 case) direction. One study did not reported any details about jerkiness computation. CONCLUSION: This review identified the capabilities of turning-in-place assessment in identifying movement differences between the various subject groups. The results, based on data acquired by inertial measurement units across studies, are comparable. A more in-depth analysis of tests developed for gait, which has been adopted in turning-in-place, is needed to examine their validity and accuracy.


Asunto(s)
Enfermedad de Parkinson , Accidente Cerebrovascular , Persona de Mediana Edad , Humanos , Anciano , Marcha , Movimiento , Pierna
3.
Gait Posture ; 107: 49-60, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734191

RESUMEN

BACKGROUND: Local dynamic stability (LDS) has become accepted as a gait stability indicator. The deterioration of gait stability is magnified in older adults. RESEARCH QUESTION: What is the current state in the field regarding rthe relationship between LDS and cognitive and/or physical function in older adults? METHODS: A scoping review design was used to search for peer-reviewed literature or conference proceedings published through May 2023 for an association between LDS and cognitive (e.g., Montreal Cognitive Assessment) or physical performance (e.g., Timed Up & Go Test) in older adults. Only studies investigating gait stability via LDS during controlled walking, when dealing with a subject group consisting of healthy older adults, and quantifying LDS relationship to cognitive and/or physical measure were included. We analysed data from the studies in a descriptive manner. RESULTS: In total, 814 potentially relevant articles were selected, of which 15 met the inclusion criteria. We identified 37 LDS quantifiers employed in LDS-cognition and/or LDS-physical performance relationship assessment. Nine measures of cognitive and 20 measures of physical performance were analysed. Most studies estimated LDS quantities using triaxial acceleration data. However, there was a variance in sensor placement and signal direction. Out of the 56 studied relationships of LDS to physical performance measures, sixteen were found to be relevant. Out of 22 studied relationships between LDS and cognitive measures, only two were worthwhile. SIGNIFICANCE: Considering the heterogeneity of the utilized LDS (caused by different sensors locations, signals, and signal directions as well as variety of computational approaches to estimate LDS) and cognitive/physical measures, the results of this scoping review does not indicate a current need for a systematic review with meta-analysis. To assess the overall utility of LDS to reveal a relationship between LDS to cognitive and physical performance measures, an analysis of other subject groups would be appropriate.


Asunto(s)
Marcha , Caminata , Humanos , Anciano , Cognición , Rendimiento Físico Funcional
4.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501804

RESUMEN

Due to the ever-increasing proportion of older people in the total population and the growing awareness of the importance of protecting workers against physical overload during long-time hard work, the idea of supporting exoskeletons progressed from high-tech fiction to almost commercialized products within the last six decades. Sensors, as part of the perception layer, play a crucial role in enhancing the functionality of exoskeletons by providing as accurate real-time data as possible to generate reliable input data for the control layer. The result of the processed sensor data is the information about current limb position, movement intension, and needed support. With the help of this review article, we want to clarify which criteria for sensors used in exoskeletons are important and how standard sensor types, such as kinematic and kinetic sensors, are used in lower limb exoskeletons. We also want to outline the possibilities and limitations of special medical signal sensors detecting, e.g., brain or muscle signals to improve data perception at the human-machine interface. A topic-based literature and product research was done to gain the best possible overview of the newest developments, research results, and products in the field. The paper provides an extensive overview of sensor criteria that need to be considered for the use of sensors in exoskeletons, as well as a collection of sensors and their placement used in current exoskeleton products. Additionally, the article points out several types of sensors detecting physiological or environmental signals that might be beneficial for future exoskeleton developments.


Asunto(s)
Dispositivo Exoesqueleto , Humanos , Anciano , Extremidad Inferior/fisiología , Fenómenos Biomecánicos , Movimiento/fisiología
6.
Gait Posture ; 84: 8-10, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33260079

RESUMEN

BACKGROUND: The Timed Up and Go test is a well-known clinical test for assessing of mobility and fall risk. It has been shown that the IMU which use an accelerometer and gyroscope are capable of analysing the quantitative parameters of the sit-to-stand transition. RESEARCH QUESTION: Which signals obtained by the inertial sensors are suitable for continuous Timed Up & Go test sit-to-stand transition analysis? METHODS: In the study we included 29 older adult volunteers and 31 de-novo Parkinson disease (PD) patients. All subjects performed an instrumented extended TUG wearing a gyro-accelerometer. The sit-to-stand transition was detected from an angular velocity signal. The sit-to-stand signal pattern within the subject group was analyzed via an intra-class correlation between curves. Inter-subjects' variability was visualized using prediction bands. RESULTS: The angular velocity about the pitch axis exhibited the best signal match across subjects in both groups (0.50 < ICC < 0.75). When analysing acceleration, the acceleration along the antero-posterior axis showed moderate inter-subjects signal pattern match (0.50 < ICC < 0.75) in the reference group. The analysis of other signals revealed a poor signal pattern in both subject groups. SIGNIFICANCE: For optimal interpretation of the analysis of continuous curves, the signal pattern must be considered. Also, the inter-subject variability along this pattern can be informative and useful.


Asunto(s)
Equilibrio Postural/fisiología , Femenino , Humanos , Masculino , Sedestación , Posición de Pie
7.
Sleep Med ; 75: 45-49, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32853917

RESUMEN

BACKGROUND: Idiopathic rapid eye movement sleep behaviour (iRBD) is considered as a risk factor for Parkinson's disease (PD) development. Evaluation of repetitive movements with finger tapping, which serves as a principal task to measure the extent of bradykinesia in PD, may undercover potential PD patients. The aim of this study was to explore whether finger tapping abnormalities, evaluated with a 3D motion capture system, are already present in RBD patients. METHODS: Finger tapping data was acquired using a contactless 3D motion capture system from 40 RBD subjects and compared to 25 de-novo PD patients and 25 healthy controls. Objective assessment of amplitude decrement, maximum opening velocity and their combination representing finger tapping decrement was performed in the sequence of the first ten tapping movements. The association between instrumental finger tapping data and semi-quantitative clinical evaluation was analyzed. RESULTS: While significant differences between PD and controls were found for all investigated finger tapping measures (p < 0.002), RBD differed from controls in finger tapping amplitude (p = 0.004) and velocity (p = 0.007) decrement but not in maximal opening velocity. A significant relationship between the motor score from the Movement Disorders Society - Unified Parkinson's Disease Rating Scale and finger tapping decrement was shown for both patient groups, ie RBD (r = 0.36, p = 0.02) and PD (r = 0.60, p = 0.002). CONCLUSIONS: In our group of RBD patients we demonstrated amplitude decrement of repetitive movements, which may correspond with prodromal bradykinesia. Our findings suggest instrumental analysis of finger tapping abnormalities as a potential novel clinical marker reflecting subclinical motor disturbances in RBD.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Trastorno de la Conducta del Sueño REM , Biomarcadores , Humanos , Hipocinesia/diagnóstico , Movimiento , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Trastorno de la Conducta del Sueño REM/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA