Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Hortic Res ; 10(11): uhad211, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023472

RESUMEN

Potato is the third most important food crop in the world. Diverse pathogens threaten sustainable crop production but can be controlled, in many cases, through the deployment of disease resistance genes belonging to the family of nucleotide-binding, leucine-rich-repeat (NLR) genes. To identify effective disease resistance genes in established varieties, we have successfully established SMRT-AgRenSeq in tetraploid potatoes and have further enhanced the methodology by including dRenSeq in an approach that we term SMR-AgRenSeq-d. The inclusion of dRenSeq enables the filtering of candidates after the association analysis by establishing a presence/absence matrix across resistant and susceptible varieties that is translated into an F1 score. Using a SMRT-RenSeq-based sequence representation of the NLRome from the cultivar Innovator, SMRT-AgRenSeq-d analyses reliably identified the late blight resistance benchmark genes Rpi-R1, Rpi-R2-like, Rpi-R3a, and Rpi-R3b in a panel of 117 varieties with variable phenotype penetrations. All benchmark genes were identified with an F1 score of 1, which indicates absolute linkage in the panel. This method also identified nine strong candidates for Gpa5 that controls the potato cyst nematode (PCN) species Globodera pallida (pathotypes Pa2/3). Assuming that NLRs are involved in controlling many types of resistances, SMRT-AgRenSeq-d can readily be applied to diverse crops and pathogen systems.

2.
Ann Bot ; 129(1): 65-78, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34605859

RESUMEN

BACKGROUND AND AIMS: Some Caryophyllales species accumulate abnormally large shoot sodium (Na) concentrations in non-saline environments. It is not known whether this is a consequence of altered Na partitioning between roots and shoots. This paper tests the hypotheses (1) that Na concentrations in shoots ([Na]shoot) and in roots ([Na]root) are positively correlated among Caryophyllales, and (2) that shoot Na hyperaccumulation is correlated with [Na]shoot/[Na]root quotients. METHODS: Fifty two genotypes, representing 45 Caryophyllales species and 4 species from other angiosperm orders, were grown hydroponically in a non-saline, complete nutrient solution. Concentrations of Na in shoots and in roots were determined using inductively coupled plasma mass spectrometry (ICP-MS). KEY RESULTS: Sodium concentrations in shoots and roots were not correlated among Caryophyllales species with normal [Na]shoot, but were positively correlated among Caryophyllales species with abnormally large [Na]shoot. In addition, Caryophyllales species with abnormally large [Na]shoot had greater [Na]shoot/[Na]root than Caryophyllales species with normal [Na]shoot. CONCLUSIONS: Sodium hyperaccumulators in the Caryophyllales are characterized by abnormally large [Na]shoot, a positive correlation between [Na]shoot and [Na]root, and [Na]shoot/[Na]root quotients greater than unity.


Asunto(s)
Caryophyllales , Magnoliopsida , Magnoliopsida/genética , Raíces de Plantas/química , Brotes de la Planta/genética , Sodio
3.
Physiol Plant ; 168(4): 790-802, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31400248

RESUMEN

The ionome is the elemental composition of a living organism, its tissues, cells or cell compartments. The ionomes of roots, stems and leaves of 14 native Brazilian forest species were characterised to examine the relationships between plant and organ ionomes and the phylogenetic and ecological affiliations of species. The null hypothesis that ionomes of Brazilian forest species and their organs do not differ was tested. Concentrations of mineral nutrients in roots, stems and leaves were determined for 14 Brazilian forest species, representing seven angiosperm orders, grown hydroponically in a complete nutrient solution. The 14 species could be differentiated by their ionomes and the partitioning of mineral nutrients between organs. The ionomic differences between the 14 species did not reflect their phylogenetic relationships or successional ecology. Differences between shoot ionomes and root ionomes were greater than differences in the ionome of an organ when compared among genotypes. In conclusion, differences in ionomes of species and their organs reflect a combination of ancient phylogenetic and recent environmental adaptations.


Asunto(s)
Iones/análisis , Magnoliopsida/química , Magnoliopsida/genética , Filogenia , Brasil , Bosques , Hojas de la Planta/química , Raíces de Plantas/química , Tallos de la Planta/química
4.
Ann Bot ; 122(2): 221-226, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722830

RESUMEN

Background: Linear relationships are commonly observed between shoot magnesium ([Mg]shoot) and shoot calcium ([Ca]shoot) concentrations among angiosperm species growing in the same environment. Scope and Conclusions: This article argues that, in plants that do not exhibit 'luxury' accumulation of Mg or Ca, (1) distinct stoichiometric relationships between [Mg]shoot and [Ca]shoot are exhibited by at least three groups of angiosperm species, namely commelinid monocots, eudicots excluding Caryophyllales, and Caryophyllales species; (2) these relationships are determined by cell wall chemistry and the Mg/Ca mass quotients in their cell walls; (3) differences between species in [Mg]shoot and [Ca]shoot within each group are associated with differences in the cation exchange capacity (CEC) of the cell walls of different species; and (4) Caryophyllales constitutively accumulate more Mg in their vacuoles than other angiosperm species when grown without a supra-sufficient Mg supply.


Asunto(s)
Calcio/metabolismo , Pared Celular/química , Magnesio/metabolismo , Magnoliopsida/química , Calcio/análisis , Pared Celular/metabolismo , Magnesio/análisis , Magnoliopsida/genética , Magnoliopsida/metabolismo , Filogenia , Brotes de la Planta/química , Brotes de la Planta/genética , Vacuolas/química , Vacuolas/metabolismo
5.
Physiol Plant ; 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29412469

RESUMEN

The ionome is defined as the elemental composition of a subcellular structure, cell, tissue, organ or organism. The subset of the ionome comprising mineral nutrients is termed the functional ionome. A 'standard functional ionome' of leaves of an 'average' angiosperm, defined as the nutrient composition of leaves when growth is not limited by mineral nutrients, is presented and can be used to compare the effects of environment and genetics on plant nutrition. The leaf ionome of a plant is influenced by interactions between its environment and genetics. Examples of the effects of the environment on the leaf ionome are presented and the consequences of nutrient deficiencies on the leaf ionome are described. The physiological reasons for (1) allometric relationships between leaf nitrogen and phosphorus concentrations and (2) linear relationships between leaf calcium and magnesium concentrations are explained. It is noted that strong phylogenetic effects on the mineral composition of leaves of angiosperm species are observed even when sampled from diverse environments. The evolutionary origins of traits including (1) the small calcium concentrations of Poales leaves, (2) the large magnesium concentrations of Caryophyllales leaves and (3) the large sulphur concentrations of Brassicales leaves are traced using phylogenetic relationships among angiosperm orders, families and genera. The rare evolution of hyperaccumulation of toxic elements in leaves of angiosperms is also described. Consequences of variation in the leaf ionome for ecology, mineral cycling in the environment, strategies for phytoremediation of contaminated land, sustainable agriculture and the nutrition of livestock and humans are discussed.

6.
New Phytol ; 214(1): 284-293, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27918626

RESUMEN

The prevalence of sodium (Na)-'hyperaccumulator' species, which exhibit abnormally large shoot sodium concentrations ([Na]shoot ) when grown in nonsaline environments, was investigated among angiosperms in general and within the Caryophyllales order in particular. Shoot Na concentrations were determined in 334 angiosperm species, representing 35 orders, grown hydroponically in a nonsaline solution. Many Caryophyllales species exhibited abnormally large [Na]shoot when grown hydroponically in a nonsaline solution. The bimodal distribution of the log-normal [Na]shoot of species within the Caryophyllales suggested at least two distinct [Na]shoot phenotypes within this order. Mapping the trait of Na-hyperaccumulation onto the phylogenetic relationships between Caryophyllales families, and between subfamilies within the Amaranthaceae, suggested that the trait evolved several times within this order: in an ancestor of the Aizoaceae, but not the Phytolaccaceae or Nyctaginaceae, in ancestors of several lineages formerly classified as Chenopodiaceae, but not in the Amaranthaceae sensu stricto, and in ancestors of species within the Cactaceae, Portulacaceae, Plumbaginaceae, Tamaricaceae and Polygonaceae. In conclusion, a disproportionate number of Caryophyllales species behave as Na-hyperaccumulators, and multiple evolutionary origins of this trait can be identified within this order.


Asunto(s)
Evolución Biológica , Caryophyllales/metabolismo , Ambiente , Brotes de la Planta/metabolismo , Sodio/metabolismo , Biomasa , Filogenia , Plantas Tolerantes a la Sal/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...