Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ALTEX ; 38(2): 235-244, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33086384

RESUMEN

Lung cancer remains the leading cause of cancer-associated mortality. Despite recent promising achievements, the overall prognosis remains very poor. In order to integrate the advantages of adapted, transgenic animal models with a high-throughput procedure on the one hand and compliance with the 3R principles on the other hand, we have established and evaluated appropriate Drosophila models. To achieve this goal, we ectopically expressed oncogenes representing the most important driver mutations exclusively in the airway system. These oncogenes were either the human oncogenes or the corresponding Drosophila orthologs. We concentrated on two complementary read-out systems, 1) early larval lethality and 2) quantification of concurrently expressed GFP as a proxy for tumor mass. We could show that ectopic expression of EgfrCA, RasV12, Raf, Rolled (MAPK), PI3K92E, Alk, Akt and Arm can induce early lethality. Thus, they can be used in a straight-forward high-throughput screening approach and can replace mouse models to a considerable extent. Moreover, we could also show that measurement of tumor mass by a concurrently expressed marker (GFP) can be used to detect positive treatment results. Our results show that our Drosophila system provides a superb in vivo inver­tebrate screening system amenable to high-throughput approaches and thus effectively complements the toolbox for the development of novel anti-lung cancer treatments, while complying with the 3R principles.


Asunto(s)
Drosophila , Neoplasias Pulmonares , Animales , Modelos Animales de Enfermedad , Drosophila/genética , Neoplasias Pulmonares/genética , Ratones , Mutación , Oncogenes
2.
Front Cell Dev Biol ; 8: 572735, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984353

RESUMEN

Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pH i increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pH i increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.

3.
Front Mol Neurosci ; 12: 251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680856

RESUMEN

The orphan cytokine receptor-like factor 3 (CRLF3) was identified as a neuroprotective erythropoietin receptor in locust neurons and emerged with the evolution of the eumetazoan nervous system. Human CRLF3 belongs to class I helical cytokine receptors that mediate pleiotropic cellular reactions to injury and diverse physiological challenges. It is expressed in various tissues including the central nervous system but its ligand remains unidentified. A CRLF3 ortholog in the holometabolous beetle Tribolium castaneum was recently shown to induce anti-apoptotic mechanisms upon stimulation with human recombinant erythropoietin. To test the hypothesis that CRLF3 represents an ancient cell-protective receptor for erythropoietin-like cytokines, we investigated its presence across metazoan species. Furthermore, we examined CRLF3 expression and function in the hemimetabolous insect Locusta migratoria. Phylogenetic analysis of CRLF3 sequences indicated that CRLF3 is absent in Porifera, Placozoa and Ctenophora, all lacking the traditional nervous system. However, it is present in all major eumetazoan groups ranging from cnidarians over protostomians to mammals. The CRLF3 sequence is highly conserved and abundant amongst vertebrates. In contrast, relatively few invertebrates express CRLF3 and these sequences show greater variability, suggesting frequent loss due to low functional importance. In L. migratoria, we identified the transcript Lm-crlf3 by RACE-PCR and detected its expression in locust brain, skeletal muscle and hemocytes. These findings correspond to the ubiquitous expression of crlf3 in mammalian tissues. We demonstrate that the sole addition of double-stranded RNA to the culture medium (called soaking RNA interference) specifically interferes with protein expression in locust primary brain cell cultures. This technique was used to knock down Lm-crlf3 expression and to abolish its physiological function. We confirmed that recombinant human erythropoietin rescues locust brain neurons from hypoxia-induced apoptosis and showed that this neuroprotective effect is absent after knocking down Lm-crlf3. Our results affirm the erythropoietin-induced neuroprotective function of CRLF3 in a second insect species from a different taxonomic group. They suggest that the phylogenetically conserved CRLF3 receptor may function as a cell protective receptor for erythropoietin or a structurally related cytokine also in other animals including vertebrate and mammalian species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...