Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurobiol Aging ; 106: 207-222, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303222

RESUMEN

The hippocampus is vulnerable to deterioration in Alzheimer's disease (AD). It is, however, a heterogeneous structure, which may contribute to the differential volumetric changes along its septotemporal axis during AD progression. Here, we investigated amyloid plaque deposition along the dorsoventral axis in two strains of transgenic AD (ADTg) mouse models. We also used patch-clamp physiology in these mice to probe for functional consequences of AD pathogenesis in ventral hippocampus, which we found bears significantly higher plaque burden in the aged ADTg group compared to corresponding dorsal regions. Despite dorsoventral differences in amyloid load, ventral CA1 pyramidal neurons of aged ADTg mice exhibited subthreshold physiological changes similar to those previously reported in dorsal neurons, indicative of an HCN channelopathy, but lacked exacerbated suprathreshold accommodation. Additionally, HCN channel function could be rescued by pharmacological manipulation of the endoplasmic reticulum. These observations suggest that an AD-linked HCN channelopathy emerges in both dorsal and ventral CA1 pyramidal neurons, but that the former encounter an additional integrative obstacle in the form of reduced intrinsic excitability.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Placa Amiloide/metabolismo , Células Piramidales/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones Transgénicos , Tamaño de los Órganos , Técnicas de Placa-Clamp
2.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29906573

RESUMEN

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiología , Canalopatías/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Potenciales de Acción , Envejecimiento , Animales , Región CA1 Hipocampal/ultraestructura , Modelos Animales de Enfermedad , Retículo Endoplásmico/fisiología , Femenino , Masculino , Ratones Transgénicos , Células Piramidales/ultraestructura
3.
Brain Struct Funct ; 220(6): 3143-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25031178

RESUMEN

Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.


Asunto(s)
Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Dendritas/patología , Neuronas/patología , Células Piramidales/patología , Enfermedad de Alzheimer/metabolismo , Animales , Axones/metabolismo , Región CA1 Hipocampal/metabolismo , Células Cultivadas , Dendritas/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Plasticidad Neuronal , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Células Piramidales/metabolismo , Receptores AMPA/metabolismo , Sinapsis/patología
4.
J Neurophysiol ; 109(7): 1940-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23324324

RESUMEN

The rodent hippocampus can be divided into dorsal (DHC) and ventral (VHC) domains on the basis of behavioral, anatomical, and biochemical differences. Recently, we reported that CA1 pyramidal neurons from the VHC were intrinsically more excitable than DHC neurons, but the specific ionic conductances contributing to this difference were not determined. Here we investigated the hyperpolarization-activated current (I(h)) and the expression of HCN1 and HCN2 channel subunits in CA1 pyramidal neurons from the DHC and VHC. Measurement of Ih with cell-attached patches revealed a significant depolarizing shift in the V(1/2) of activation for dendritic h-channels in VHC neurons (but not DHC neurons), and ultrastructural immunolocalization of HCN1 and HCN2 channels revealed a significantly larger HCN1-to-HCN2 ratio for VHC neurons (but not DHC neurons). These observations suggest that a shift in the expression of HCN1 and HCN2 channels drives functional changes in I(h) for VHC neurons (but not DHC neurons) and could thereby significantly alter the capacity for dendritic integration of these neurons.


Asunto(s)
Región CA1 Hipocampal/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Canales de Potasio/metabolismo , Células Piramidales/fisiología , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Expresión Génica , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/genética , Especificidad de Órganos , Canales de Potasio/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...