Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0014724, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917430

RESUMEN

The microbial ecosystem of women undergoes enormous changes during pregnancy and the perinatal period. Little is known about the extent of changes in the maternal microbiome beyond the vaginal cavity and its recovery after birth. In this study, we followed pregnant women [maternal prepartum (mpre), n = 30] into the postpartum period [1 month postpartum, maternal postpartum (mpost), n = 30]. We profiled their oral, urinary, and vaginal microbiome; archaeome; mycobiome; and urinary metabolome and compared them with those of nonpregnant (np) women (n = 29). Overall, pregnancy status (np, mpre, and mpost) had a smaller effect on the microbiomes than body site, but massive transitions were observed for the oral and urogenital (vaginal and urinary) microbiomes. While the oral microbiome fluctuates during pregnancy but stabilizes rapidly within the first month postpartum, the urogenital microbiome is characterized by a major remodeling caused by a massive loss of Lactobacillus and thus a shift from Vaginal Community State Type (CST) I (40% of women) to CST IV (85% of women). The urinary metabolome rapidly reached an np-like composition after delivery, apart from lactose and oxaloacetic acid, which were elevated during active lactation. Fungal and archaeal profiles were indicative of pregnancy status. Methanobacterium signatures were found mainly in np women, and Methanobrevibacter showed an opposite behavior in the oral cavity (increased) and vagina (decreased) during pregnancy. Our findings suggest that the massive remodeling of the maternal microbiome and metabolome needs more attention and that potential interventions could be envisioned to optimize recovery and avoid long-term effects on maternal health and subsequent pregnancies. IMPORTANCE: The perinatal microbiome is of specific interest for the health of the mother and infant. We therefore investigate the dynamics of the female microbiome from nonpregnant over prepartum to the postpartum period in urine and the oral and vaginal cavities. A specific focus of this study is put not only on the bacterial part of the microbiome but also on the underinvestigated contribution of fungi and archaea. To our knowledge, we present the first study highlighting those aspects. Our findings suggest that the massive remodeling of the maternal microbiome and metabolome needs more attention and that potential interventions could be envisioned to optimize recovery and avoid long-term effects on maternal health and subsequent pregnancies.

2.
Nat Commun ; 14(1): 1349, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906612

RESUMEN

Preterm infants with very low birthweight are at serious risk for necrotizing enterocolitis. To functionally analyse the principles of three successful preventive NEC regimens, we characterize fecal samples of 55 infants (<1500 g, n = 383, female = 22) longitudinally (two weeks) with respect to gut microbiome profiles (bacteria, archaea, fungi, viruses; targeted 16S rRNA gene sequencing and shotgun metagenomics), microbial function, virulence factors, antibiotic resistances and metabolic profiles, including human milk oligosaccharides (HMOs) and short-chain fatty acids (German Registry of Clinical Trials, No.: DRKS00009290). Regimens including probiotic Bifidobacterium longum subsp. infantis NCDO 2203 supplementation affect microbiome development globally, pointing toward the genomic potential to convert HMOs. Engraftment of NCDO 2203 is associated with a substantial reduction of microbiome-associated antibiotic resistance as compared to regimens using probiotic Lactobacillus rhamnosus LCR 35 or no supplementation. Crucially, the beneficial effects of Bifidobacterium longum subsp. infantis NCDO 2203 supplementation depends on simultaneous feeding with HMOs. We demonstrate that preventive regimens have the highest impact on development and maturation of the gastrointestinal microbiome, enabling the establishment of a resilient microbial ecosystem that reduces pathogenic threats in at-risk preterm infants.


Asunto(s)
Microbioma Gastrointestinal , Recien Nacido Prematuro , Lactante , Recién Nacido , Humanos , Femenino , ARN Ribosómico 16S/genética , Ecosistema , Intestinos , Heces/microbiología , Bifidobacterium longum subspecies infantis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...