Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 118(1): 242-252, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607642

RESUMEN

PURPOSE: A novel form of lung functional imaging applied for functional avoidance radiation therapy has been developed that uses 4-dimensional computed tomography (4DCT) data and image processing techniques to calculate lung ventilation (4DCT-ventilation). Lung segmentation is a common step to define a region of interest for 4DCT-ventilation generation. The purpose of this study was to quantitatively evaluate the sensitivity of 4DCT-ventilation imaging using different lung segmentation methods. METHODS AND MATERIALS: The 4DCT data of 350 patients from 2 institutions were used. Lung contours were generated using 3 methods: (1) reference segmentations that removed airways and pulmonary vasculature manually (Lung-Manual), (2) standard lung contours used for planning (Lung-RadOnc), and (3) artificial intelligence (AI)-based contours that removed the airways and pulmonary vasculature (Lung-AI). The AI model was based on a residual 3-dimensional U-Net and was trained using the Lung-Manual contours of 279 patients. We compared the Lung-RadOnc or Lung-AI with Lung-Manual contours for the entire 4DCT-ventilation functional avoidance process including lung segmentation (surface Dice similarity coefficient [Surface DSC]), 4DCT-ventilation generation (correlation), and subanalysis of 10 patients on a dosimetric endpoint (percentage of high functional volume of lung receiving ≥20 Gy [fV20{%}]). RESULTS: Surface DSC comparing Lung-Manual/Lung-RadOnc and Lung-Manual/Lung-AI contours was 0.40 ± 0.06 and 0.86 ± 0.04, respectively. The correlation between 4DCT-ventilation images generated with Lung-Manual/Lung-RadOnc and Lung-Manual/Lung-AI were 0.48 ± 0.14 and 0.85 ± 0.14, respectively. The difference in fV20[%] between 4DCT-ventilation generated with Lung-Manual/Lung-RadOnc and Lung-Manual/Lung-AI was 2.5% ± 4.1% and 0.3% ± 0.5%, respectively. CONCLUSIONS: Our work showed that using standard planning lung contours can result in significantly variable 4DCT-ventilation images. The study demonstrated that AI-based segmentations generate lung contours and 4DCT-ventilation images that are similar to those generated using manual methods. The significance of the study is that it characterizes the lung segmentation sensitivity of the 4DCT-ventilation process and develops methods that can facilitate the integration of this novel imaging in busy clinics.


Asunto(s)
Neoplasias Pulmonares , Ventilación Pulmonar , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Inteligencia Artificial , Pulmón/diagnóstico por imagen , Tomografía Computarizada Cuatridimensional/métodos
2.
J Appl Clin Med Phys ; 24(12): e14148, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37722766

RESUMEN

Dosimetric uncertainties in very small (≤1.5 × 1.5 cm2 ) photon fields are remarkably higher, which undermines the validity of the virtual cone (VC) technique with a diminutive and variable MLC fields. We evaluate the accuracy and reproducibility of the VC method with a very small, fixed MLC field setting, called a fixed virtual cone (fVC), for small target radiosurgery such as trigeminal neuralgia (TGN). The fVC is characterized by 0.5 cm x 0.5 cm high-definition (HD) MLC field of 10MV FFF beam defined at 100 cm SAD, while backup jaws are positioned at 1.5 cm x 1.5 cm. A spherical dose distribution equivalent to 5 mm (diameter) physical cone was generated using 10-14 non-coplanar, partial arcs. Dosimetric accuracy was validated using SRS diode (PTW 60018), SRS MapCHECK (SNC) measurements. As a quality assurance measure, 10 treatment plans (SRS) for TGN, consisting of various arc ranges at different collimator angles were analyzed using 6 MV FFF and 10 MV FFF beams, including a field-by-field study (n = 130 fields). Dose outputs were compared between the Eclipse TPS and measurements (SRS MapCHECK). Moreover, dosimetric changes in the field defining fVC, prompted by a minute (± 0.5-1.0 mm) leaf shift, was examined among TPS, diode measurements, and Monte Carlo (MC) simulations. The beam model for fVC was validated (≤3% difference) using SRS MapCHECK based absolute dose measurements. The equivalent diameters of the 50% isodose distribution were found comparable to that of a 5 mm cone. Additionally, the comparison of field output factors, dose per MU between the TPS and SRS diode measurements using the fVC field, including ± 1 mm leaf shift, yielded average discrepancies within 5.5% and 3.5% for 6 MV FFF and 10 MV FFF beams, respectively. Overall, the fVC method is a credible alternative to the physical cone (5 mm) that can be applied in routine radiosurgical treatment of TGN.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Neuralgia del Trigémino , Humanos , Radiocirugia/métodos , Reproducibilidad de los Resultados , Neuralgia del Trigémino/cirugía , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Radiometría , Dosificación Radioterapéutica
3.
J Appl Clin Med Phys ; 24(4): e13880, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36651219

RESUMEN

The multi-leaf collimator (MLC)-equipped CyberKnife® M6 radiosurgery system (CKM6) (Accuray Inc., Sunnyvale, CA) has been increasingly employed for stereotactic radiosurgery (SRS) to treat relatively small lesions. However, achieving an accurate dose distribution in such cases is usually challenging due to the combination of numerous small fields ≤ (30 × 30) mm2 . In this study, we developed a new Monte Carlo (MC) dose model for the CKM6 system using the EGSnrc to investigate dose variations in the small fields. The dose model was verified for the static MLC fields ranging from (53.8 × 53.9) to (7.6 × 7.7) mm2 at 800 mm source to axis distance in a water phantom, based on the computed doses of Accuray Precision® (Accuray Inc.) treatment planning system (TPS). We achieved a statistical uncertainty of ≤4% by simulating 30-50 million incident particles/histories. Then, the treatment plans were created for the same fields in the TPS, and the corresponding measurements were performed with MapCHECK2 (Sun Nuclear Corporation), a standard device for patient-specific quality assurance (PSQA). Results of the MC simulations, TPS, and MapCHECK2 measurements were inter-compared. An overall difference in dosimetric parameters such as profiles, tissue maximum ratio (TMR), and output factors (OF) between the MC simulations and the TPS results was found ≤3% for (53.8 × 53.9-15.4 × 15.4) mm2 MLC fields, and it rose to 4.5% for the smallest (7.6 mm × 7.7 mm) MLC field. The MapCHECK2 results showed a deviation ranging from -1.5% to + 4.5% compared to the TPS results, whereas the deviation was within ±2.5% compared with the MC results. Overall, our MC dose model for the CKM6 system showed better agreement with measurements and it could serve as a secondary dose verification tool for the patient-specific QA in small fields.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Radiometría/métodos , Fantasmas de Imagen , Método de Montecarlo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...