Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(45): 7601-7615, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37699717

RESUMEN

Many neurons exhibit regular firing that is limited to the duration and intensity of depolarizing stimuli. However, some neurons exhibit all-or-nothing plateau potentials that, once elicited, can lead to prolonged activity that is independent of stimulus intensity or duration. To better understand this diversity of information processing, we compared the voltage-gated and Ca2+-gated currents of three identified neurons from hermaphroditic Aplysia californica Two of these neurons, B51 and B64, generated plateau potentials and a third neuron, B8, exhibited regular firing and was incapable of generating a plateau potential. With the exception of the Ca2+-gated potassium current (I KCa), all three neuron types expressed a similar array of outward and inward currents, but with distinct voltage-dependent properties for each neuron type. Inhibiting voltage-gated Ca2+ channels with Ni+ prolonged the plateau potential, indicating I KCa is important for plateau potential termination. In contrast, inhibiting persistent Na+ (I NaP) blocked plateau potentials, empirically and in simulations. Surprisingly, the properties and level of expression of I NaP were similar in all three neurons, indicating that the presence of I NaP does not distinguish between regular-firing neurons and neurons capable of generating plateau potentials. Rather, the key distinguishing factor is the relationship between I NaP and outward currents such as the delayed outward current (I D), and I KCa We then demonstrated a technique for predicting complex physiological properties such as plateau duration, plateau amplitude, and action potential duration as a function of parameter values, by fitting a curve in parameter space and projecting the curve beyond the tested values.SIGNIFICANCE STATEMENT Plateau potentials are intrinsic properties of neurons that are important for information processing in a wide variety of nervous systems. We examined three identified neurons in Aplysia californica with different propensities to generate a plateau potential. No single conductance was found to distinguish plateau generating neurons. Instead, plateau generation depended on the ratio between persistent Na+ current (I NaP), which favored plateaus, and outward currents such as I KCa, which facilitated plateau termination. Computational models revealed a relationship between the individual currents that predicted the features of simulated plateau potentials. These results provide a more solid understanding of the conductances that mediate plateau generation.


Asunto(s)
Calcio , Neuronas , Calcio/metabolismo , Neuronas/fisiología , Potenciales de Acción/fisiología
2.
J Neurosci Methods ; 396: 109935, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524249

RESUMEN

BACKGROUND: The analyses of neuronal circuits require high-throughput technologies for stimulating and recording many neurons simultaneously with single-neuron precision. Voltage-sensitive dyes (VSDs) have enabled the monitoring of membrane potentials of many (10-100 s) neurons simultaneously. Carbon fiber electrode (CFE) arrays allow for stimulation and recording of many neurons simultaneously, including intracellularly. NEW METHOD: Combining CFE with VSD leverages the advantages of both technologies, allowing for stimulation of single neurons while recording the activity of the entire network. 3-D printing technology was used to develop a chamber to simultaneously perform VSD imaging, CFE array recording, and extracellular recording from individual glass electrodes. RESULTS: Aplysia buccal ganglia were stained with VSD and imaged while also recording using a CFE array and extracellular nerve electrodes. Coincident spiking activity was recorded by VSD, CFE, and extracellular nerve electrodes. Current injection with CFE electrodes could activate and inhibit individual neurons as detected by VSD and nerve recordings. COMPARISON TO EXISTING METHODS: The large size of traditional manipulators limits the number of electrodes used and the number of neurons recorded during an experiment. Here we present a method to build a 3-D printed recording chamber that includes a 3-axis micromanipulator to position a CFE array and eight 2-axis manipulators to position eight extracellular electrodes. CONCLUSIONS: 3-D printing technology can be used to build a custom recording chamber and micromanipulators. Combining these technologies allows for the direct modulation of the activity of neurons while recording the activity of 100 s of neurons simultaneously.


Asunto(s)
Colorantes Fluorescentes , Neuronas , Fibra de Carbono , Potenciales de Acción/fisiología , Neuronas/fisiología , Electrodos
3.
J Neurosci ; 42(7): 1211-1223, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34992131

RESUMEN

Despite numerous studies examining the mechanisms of operant conditioning (OC), the diversity of OC plasticity loci and their synergism have not been examined sufficiently. In the well-characterized feeding neural circuit of Aplysia, in vivo and in vitro appetitive OC increases neuronal excitability and electrical coupling among several neurons leading to an increase in expression of ingestive behavior. Here, we used the in vitro analog of OC to investigate whether OC reduces the excitability of a neuron, B4, whose inhibitory connections decrease expression of ingestive behavior. We found OC decreased the excitability of B4. This change appeared intrinsic to B4 because it could be replicated with an analog of OC in isolated cultures of B4 neurons. In addition to changes in B4 excitability, OC decreased the strength of B4's inhibitory connection to a key decision-making neuron, B51. The OC-induced changes were specific without affecting the excitability of another neuron critical for feeding behavior, B8, or the B4-to-B8 inhibitory connection. A conductance-based circuit model indicated that reducing the B4-to-B51 synapse, or increasing B51 excitability, mediated the OC phenotype more effectively than did decreasing B4 excitability. We combined these modifications to examine whether they could act synergistically. Combinations including B51 synergistically enhanced feeding. Taken together, these results suggest modifications of diverse loci work synergistically to mediate OC and that some neurons are well suited to work synergistically with plasticity in other loci.SIGNIFICANCE STATEMENT The ways in which synergism of diverse plasticity loci mediate the change in motor patterns in operant conditioning (OC) are poorly understood. Here, we found that OC was in part mediated by decreasing the intrinsic excitability of a critical neuron of Aplysia feeding behavior, and specifically reducing the strength of one of its inhibitory connections that targets a key decision-making neuron. A conductance-based computational model indicated that the known plasticity loci showed a surprising level of synergism to mediate the behavioral changes associated with OC. These results highlight the importance of understanding the diversity, specificity and synergy among different types of plasticity that encode memory. Also, because OC in Aplysia is mediated by dopamine (DA), the present study provides insights into specific and synergistic mechanisms of DA-mediated reinforcement of behaviors.


Asunto(s)
Condicionamiento Operante/fisiología , Modelos Neurológicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Aplysia , Simulación por Computador
4.
J Neural Eng ; 18(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33684898

RESUMEN

Objective. Accurate inference of functional connectivity is critical for understanding brain function. Previous methods have limited ability distinguishing between direct and indirect connections because of inadequate scaling with dimensionality. This poor scaling performance reduces the number of nodes that can be included in conditioning. Our goal was to provide a technique that scales better and thereby enables minimization of indirect connections.Approach. Our major contribution is a powerful model-free framework, graphical directed information (GDI), that enables pairwise directed functional connections to be conditioned on the activity of substantially more nodes in a network, producing a more accurate graph of functional connectivity that reduces indirect connections. The key technology enabling this advancement is a recent advance in the estimation of mutual information (MI), which relies on multilayer perceptrons and exploiting an alternative representation of the Kullback-Leibler divergence definition of MI. Our second major contribution is the application of this technique to both discretely valued and continuously valued time series.Main results. GDI correctly inferred the circuitry of arbitrary Gaussian, nonlinear, and conductance-based networks. Furthermore, GDI inferred many of the connections of a model of a central pattern generator circuit inAplysia, while also reducing many indirect connections.Significance. GDI is a general and model-free technique that can be used on a variety of scales and data types to provide accurate direct connectivity graphs and addresses the critical issue of indirect connections in neural data analysis.


Asunto(s)
Encéfalo , Modelos Neurológicos , Imagen por Resonancia Magnética , Red Nerviosa , Redes Neurales de la Computación
5.
eNeuro ; 4(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29071298

RESUMEN

A key issue in neuroscience is understanding the ways in which neuromodulators such as dopamine modify neuronal activity to mediate selection of distinct motor patterns. We addressed this issue by applying either low or high concentrations of l-DOPA (40 or 250 µM) and then monitoring activity of up to 130 neurons simultaneously in the feeding circuitry of Aplysia using a voltage-sensitive dye (RH-155). l-DOPA selected one of two distinct buccal motor patterns (BMPs): intermediate (low l-DOPA) or bite (high l-DOPA) patterns. The selection of intermediate BMPs was associated with shortening of the second phase of the BMP (retraction), whereas the selection of bite BMPs was associated with shortening of both phases of the BMP (protraction and retraction). Selection of intermediate BMPs was also associated with truncation of individual neuron spike activity (decreased burst duration but no change in spike frequency or burst latency) in neurons active during retraction. In contrast, selection of bite BMPs was associated with compression of spike activity (decreased burst latency and duration and increased spike frequency) in neurons projecting through specific nerves, as well as increased spike frequency of protraction neurons. Finally, large-scale voltage-sensitive dye recordings delineated the spatial distribution of neurons active during BMPs and the modification of that distribution by the two concentrations of l-DOPA.


Asunto(s)
Conducta de Elección/efectos de los fármacos , Dopaminérgicos/farmacología , Conducta Alimentaria/efectos de los fármacos , Levodopa/farmacología , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Aplysia , Axones/efectos de los fármacos , Axones/fisiología , Relación Dosis-Respuesta a Droga , Lateralidad Funcional/efectos de los fármacos , Ganglios de Invertebrados/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Tiempo de Reacción/efectos de los fármacos , Imagen de Colorante Sensible al Voltaje
6.
Learn Mem ; 24(7): 289-297, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28620076

RESUMEN

Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM). Previously, a computational model was developed which correctly predicted a novel enhanced training protocol that augmented LTF by searching for the protocol with maximal overlap of PKA and ERK activation. The present study focused on pharmacological approaches to enhance LTF. Combining an ERK activator, NSC, and a PKA activator, rolipram, enhanced LTF to a greater extent than did either drug alone. An even greater increase in LTF occurred when rolipram and NSC were combined with the Enhanced protocol. These results indicate superior memory can be achieved by enhanced protocols that take advantage of the structure and dynamics of the biochemical cascades underlying memory formation, used in conjunction with combinatorial pharmacology.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Potenciación a Largo Plazo/fisiología , Células Receptoras Sensoriales/metabolismo , Animales , Aplysia , Proteína de Unión a CREB/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Ganglios de Invertebrados/citología , Potenciación a Largo Plazo/efectos de los fármacos , Microscopía Confocal , Inhibidores de Fosfodiesterasa 4/farmacología , Fosforilación/efectos de los fármacos , Rolipram/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
7.
J Neurophysiol ; 118(2): 1055-1069, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468991

RESUMEN

A major challenge in neuroscience is to develop effective tools that infer the circuit connectivity from large-scale recordings of neuronal activity patterns. In this study, context tree maximizing (CTM) was used to estimate directed information (DI), which measures causal influences among neural spike trains in order to infer putative synaptic connections. In contrast to existing methods, the method presented here is data driven and can readily identify both linear and nonlinear relations between neurons. This CTM-DI method reliably identified circuit structures underlying simulations of realistic conductance-based networks. It also inferred circuit properties from voltage-sensitive dye recordings of the buccal ganglion of Aplysia. This method can be applied to other large-scale recordings as well. It offers a systematic tool to map network connectivity and to track changes in network structure such as synaptic strengths as well as the degrees of connectivity of individual neurons, which in turn could provide insights into how modifications produced by learning are distributed in a neural network.NEW & NOTEWORTHY This study brings together the techniques of voltage-sensitive dye recording and information theory to infer the functional connectome of the feeding central pattern generating network of Aplysia. In contrast to current statistical approaches, the inference method developed in this study is data driven and validated by conductance-based model circuits, can distinguish excitatory and inhibitory connections, is robust against synaptic plasticity, and is capable of detecting network structures that mediate motor patterns.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma/métodos , Neuronas/fisiología , Potenciales de Acción , Animales , Aplysia , Teoría de la Información , Modelos Neurológicos , Redes Neurales de la Computación , Vías Nerviosas/fisiología , Imagen de Colorante Sensible al Voltaje
8.
Biochemistry ; 52(39): 6824-33, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24010490

RESUMEN

The active site of water oxidation in Photosystem II (PSII) is a Mn4CaO5 cluster that is located in a cavity between the D1 and CP43 protein subunits by which it is coordinated. The remainder of this cavity is filled with water molecules, which serve as a source of substrate and participate in poorly understood hydrogen bond networks that may modulate the function of the Mn4CaO5 cluster. These water molecules interact with the first and second sphere amino acid ligands to the Mn4CaO5 cluster and some water interacts directly with the Mn4CaO5 cluster. Here, the results of mutations to the amino acids that line the walls of several predicted cavities in the immediate vicinity of the Mn4CaO5 cluster were examined in Synechocystis sp. PCC 6803. Of these, mutations of Val185 in the D1 subunit resulted in the most interesting functional alterations. The hydrophobic D1-Val185 occupies a location contacting water molecules that are positioned between the redox active tyrosine (YZ) and the putative proton gate residue, D1-Asp61, and at a position opposite the oxo bridge atom, O5, of the cluster. Mutations of the residue D1-Val185 were produced, with the intention that the substitute residue would extend into the water cavity that includes H2O molecules that interact with the Mn4CaO5 cluster, amino acid ligands of the Mn4CaO5 cluster, YZ and the chloride co-factor of PSII. Three of these mutants, D1-Val185Asn, D1-Val185Thr, and D1-Val185Phe, were able to accumulate significant levels of charge separating PSII and were characterized using polarographic and fluorescent techniques. Of the three substitutions, the phenylalanine substitution was the most severe with a complete inability to evolve oxygen, despite being able to accumulate PSII and to undergo stable charge separation. The threonine substitution had no apparent effect on oxygen evolution other than a 40% reduction in the steady state rate of O2 production compared to the case of wild-type Synechocystis , due to a reduced ability to accumulate PSII centers. The asparagine substitution produced the most complex phenotype with respect to O2 evolution. Although still able to evolve oxygen, D1-Val185Asn does so less efficiently than wild-type PSII, with a higher miss factor than that for the wild type. Most significantly, asparagine substitution dramatically retards the rate of O2 release and results in an extension of the kinetic lag phase prior to O2 release that is highly reminiscent of the effects of mutations produced at D1-Asp61. The observed effects of the D1-Val185Phe and D1-Val185Asn mutations may be due to alterations in the environment of nearby chloride co-factor of PSII and/or alterations in the hydrogen bond network, perhaps impeding the movement of water to a binding site on the metal cluster.


Asunto(s)
Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Valina/metabolismo , Agua/metabolismo , Manganeso/química , Modelos Moleculares , Mutación , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Synechocystis/citología , Synechocystis/enzimología , Synechocystis/metabolismo , Valina/química , Valina/genética , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...