Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Immunol ; 9(99): eadp3475, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303018

RESUMEN

Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.


Asunto(s)
Daño del ADN , Fiebre , Inflamación , Mitocondrias , Animales , Daño del ADN/inmunología , Ratones , Inflamación/inmunología , Fiebre/inmunología , Humanos , Mitocondrias/inmunología , Ratones Endogámicos C57BL , Células TH1/inmunología , Femenino , Masculino
2.
Front Pediatr ; 12: 1441293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156016

RESUMEN

Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.

3.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026695

RESUMEN

Although childhood asthma is in part an airway epithelial disorder, the development of the airway epithelium in asthma is not understood. We sought to characterize airway epithelial developmental phenotypes in those with and without recurrent wheeze and the impact of infant infection with respiratory syncytial virus (RSV). Nasal airway epithelial cells (NAECs) were collected at age 2-3 years from an a priori designed nested birth cohort of children from four mutually exclusive groups of wheezers/non-wheezers and RSV-infected/uninfected in the first year of life. NAECs were cultured in air-liquid interface differentiation conditions followed by a combined analysis of single cell RNA sequencing (scRNA-seq) and in vitro infection with respiratory syncytial virus (RSV). NAECs from children with a wheeze phenotype were characterized by abnormal differentiation and basal cell activation of developmental pathways, plasticity in precursor differentiation and a delayed onset of maturation. NAECs from children with wheeze also had increased diversity of currently known RSV receptors and blunted anti-viral immune responses to in vitro infection. The most dramatic changes in differentiation of cultured epithelium were observed in NAECs derived from children that had both wheeze and RSV in the first year of life. Together this suggests that airway epithelium in children with wheeze is developmentally reprogrammed and characterized by increased barrier permeability, decreased antiviral response, and increased RSV receptors, which may predispose to and amplify the effects of RSV infection in infancy and susceptibility to other asthma risk factors that interact with the airway mucosa. SUMMARY: Nasal airway epithelial cells from children with wheeze are characterized by altered development and increased susceptibility to RSV infection.

4.
Ann Allergy Asthma Immunol ; 133(2): 159-167.e3, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38631429

RESUMEN

BACKGROUND: Adrenal steroids play important roles in early-life development. However, our understanding of the effects of perinatal adrenal steroids on the development of childhood asthma is incomplete. OBJECTIVE: To evaluate the associations between early-life adrenal steroid levels and childhood asthma. METHODS: Participants included the Infant Susceptibility to Pulmonary Infections and Asthma following Respiratory Syncytial Virus Exposure birth cohort children with untargeted urinary metabolomics data measured during early infancy (n = 264) and nasal immune mediator data measured concurrently at age 2 to 6 months (n = 76). A total of 11 adrenal steroid compounds were identified using untargeted metabolomics and 6 asthma-relevant nasal immune mediators from multiplex assays were a priori selected. Current asthma at ages 5 and 6 years was ascertained using validated questionnaires. Associations were tested using logistic and linear regression with confounders adjustment. RESULTS: Pregnenetriol disulfate (adjusted odds ratio [aOR] = 0.20, 95% CI = 0.06-0.68) and 3a,21-dihydroxy-5b-pregnane-11,20-dione-21-glucuronide (aOR = 0.34, 95% CI = 0.14-0.75) were inversely associated with childhood asthma at 5 and 6 years after multiple testing adjustment. There was a significant interaction effect of pregnanediol-3-glucuronide by biological sex assigned at birth (aOR = 0.11, 95% CI = 0.02-0.51, for those with female sex) on childhood asthma. Pregnenetriol disulfate was inversely associated with granulocyte-macrophage colony-stimulating factor (ß = -0.45, q-value = 0.05). 3a,21-dihydroxy-5b-pregnane-11,20-dione 21-glucuronide was inversely associated with interleukin [IL]-4 (ß = -0.29, q-value = 0.02), IL-5 (ß = -0.35, q-value = 0.006), IL-13 (ß = -0.26, q-value = 0.02), granulocyte-macrophage colony-stimulating factor (ß = -0.35, q-value = 0.006), and fibroblast growth factor-ß (ß = -0.24, q-value = 0.01) after multiple testing adjustment. CONCLUSION: The inverse association between adrenal steroids downstream of progesterone and 17-hydroxypregnenolone and the odds of childhood asthma and nasopharyngeal type 2 immune biomarkers suggest that increased early-life adrenal steroids may suppress type 2 inflammation and protect against the development of childhood asthma.


Asunto(s)
Asma , Humanos , Asma/orina , Asma/epidemiología , Masculino , Femenino , Lactante , Preescolar , Niño , Corticoesteroides/orina , Corticoesteroides/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/orina , Infecciones por Virus Sincitial Respiratorio/inmunología , Factores de Riesgo
5.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L539-L550, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38410870

RESUMEN

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.


Asunto(s)
Modelos Animales de Enfermedad , Dióxido de Azufre , Animales , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Ratones Transgénicos , Remodelación Vascular/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Células Endoteliales/patología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos
6.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931077

RESUMEN

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Humanos , Ratones , Epitelio/metabolismo , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/patología
7.
J Immunol ; 211(12): 1806-1813, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37870292

RESUMEN

Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.


Asunto(s)
Asma Inducida por Aspirina , Asma , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Interleucina-33 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Prospectivos , Activación Plaquetaria , Aspirina/farmacología , Inflamación , Receptores de Tromboxanos/uso terapéutico
9.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745344

RESUMEN

Amino acid (AA) uptake is essential for T cell metabolism and function, but how tissue sites and inflammation affect CD4+ T cell subset requirements for specific AA remains uncertain. Here we tested CD4+ T cell AA demands with in vitro and multiple in vivo CRISPR screens and identify subset- and tissue-specific dependencies on the AA transporter SLC38A1 (SNAT1). While dispensable for T cell persistence and expansion over time in vitro and in vivo lung inflammation, SLC38A1 was critical for Th1 but not Th17 cell-driven Experimental Autoimmune Encephalomyelitis (EAE) and contributed to Th1 cell-driven inflammatory bowel disease. SLC38A1 deficiency reduced mTORC1 signaling and glycolytic activity in Th1 cells, in part by reducing intracellular glutamine and disrupting hexosamine biosynthesis and redox regulation. Similarly, pharmacological inhibition of SLC38 transporters delayed EAE but did not affect lung inflammation. Subset- and tissue-specific dependencies of CD4+ T cells on AA transporters may guide selective immunotherapies.

10.
Ann Am Thorac Soc ; 20(8): 1077-1087, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37526479

RESUMEN

Rationale: To identify barriers and opportunities for Ph.D., basic and translational scientists to be fully integrated into clinical units. Objectives: In 2022, an ad hoc committee of the American Thoracic Society developed a project proposal and workshop to identify opportunities and barriers for scientists who do not practice medicine to develop successful careers and achieve tenure-track faculty positions in clinical departments and divisions within academic medical centers (AMCs) in the United States. Methods: This document focuses on results from a survey of adult and pediatric pulmonary, critical care, and sleep medicine division chiefs as well as a survey of workshop participants, including faculty in departmental and school leadership roles in both basic science and clinical units within U.S. AMCs. Results: We conclude that full integration of non-clinically practicing basic and translational scientists into the clinical units, in addition to their traditional placements in basic science units, best serves the tripartite mission of AMCs to provide care, perform research, and educate the next generation. Evidence suggests clinical units do employ Ph.D. scientists in large numbers, but these faculty are often hired into non-tenure track positions, which do not provide the salary support, start-up funds, research independence, or space often associated with hiring in basic science units within the same institution. These barriers to success of Ph.D. faculty in clinical units are largely financial. Conclusions: Our recommendation is for AMCs to consider and explore some of our proposed strategies to accomplish the goal of integrating basic and translational scientists into clinical units in a meaningful way.


Asunto(s)
Centros Médicos Académicos , Médicos , Adulto , Estados Unidos , Humanos , Niño , Selección de Personal , Liderazgo , Docentes Médicos
12.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292948

RESUMEN

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than non-deployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the deployers in this cohort reported exposure to sulfur dioxide (SO 2 ), we developed a model of repetitive exposure to SO 2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular disease (PVD). Although abnormalities in small airways were not sufficient to alter lung mechanics, PVD was associated with the development of pulmonary hypertension and reduced exercise tolerance in SO 2 exposed mice. Further, we used pharmacologic and genetic approaches to demonstrate a critical role for oxidative stress and isolevuglandins in mediating PVD in this model. In summary, our results indicate that repetitive SO 2 exposure recapitulates many aspects of PDRS and that oxidative stress may mediate PVD in this model, which may be helpful for future mechanistic studies examining the relationship between inhaled irritants, PVD, and PDRS.

13.
ERJ Open Res ; 9(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37260461

RESUMEN

Background: Many patients have uncontrolled asthma despite available treatments. Most of the new asthma therapies have focused on type 2 (T2) inflammation, leaving an unmet need for innovative research into mechanisms of asthma beyond T2 and immunity. An international group of investigators developed the International Collaborative Asthma Network (ICAN) with the goal of sharing innovative research on disease mechanisms, developing new technologies and therapies, organising pilot studies and engaging early-stage career investigators from across the world. This report describes the purpose, development and outcomes of the first ICAN forum. Methods: Abstracts were solicited from interdisciplinary early-stage career investigators with innovative ideas beyond T2 inflammation for asthma and were selected for presentation at the forum. Breakout sessions were conducted to discuss innovation, collaboration and research translation. Results: The abstracts were categorised into: 1) general omics and big data analysis; 2) lung-brain axis and airway neurology; 3) sex differences; 4) paediatric asthma; 5) new therapeutic targets inspired by airway epithelial biology; 6) new therapeutics targeting airway and circulating immune mediators; and 7) lung anatomy, physiology and imaging. Discussions revealed that research groups are looking for opportunities to further their findings using larger scale collaboration and the ability to translate their in vitro findings into clinical treatment. Conclusions: Through ICAN, teams that included interdisciplinary early-stage career investigators discussed innovation, collaboration and translation in asthma and severe asthma research. With a combination of fresh ideas and energetic, collaborative, global participation, ICAN has laid a firm foundation and model for future collaborative global asthma research.

15.
Cells ; 12(5)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36899902

RESUMEN

Although profibrotic cytokines, such as IL-17A and TGF-ß1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells, we show that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. The genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after the repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. An assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota in relation to lung fibrosis severity. An analysis of female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-ß1 levels in CD4+ T cells compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Sarcoidosis , Humanos , Masculino , Femenino , Ratones , Animales , Fibrosis Pulmonar/patología , Interleucina-17/metabolismo , Factor de Crecimiento Transformador beta1 , Disbiosis , Citocinas , Estrógenos/efectos adversos
16.
Am J Respir Crit Care Med ; 207(11): 1486-1497, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36952660

RESUMEN

Rationale: Type 2 inflammation has been described in people with cystic fibrosis (CF). Whether loss of CFTR (cystic fibrosis transmembrane conductance regulator) function contributes directly to a type 2 inflammatory response has not been fully defined. Objectives: The potent alarmin IL-33 has emerged as a critical regulator of type 2 inflammation. We tested the hypothesis that CFTR deficiency increases IL-33 expression and/or release and deletion of IL-33 reduces allergen-induced inflammation in the CF lung. Methods: Human airway epithelial cells (AECs) grown from non-CF and CF cell lines and Cftr+/+ and Cftr-/- mice were used in this study. Pulmonary inflammation in Cftr+/+ and Cftr-/- mice with and without IL-33 or ST2 (IL-1 receptor-like 1) germline deletion was determined by histological analysis, BAL, and cytokine analysis. Measurements and Main Results: After allergen challenge, both CF human AECs and Cftr-/- mice had increased IL-33 expression compared with control AECs and Cftr+/+ mice, respectively. DUOX1 (dual oxidase 1) expression was increased in CF human AECs and Cftr-/- mouse lungs compared with control AECs and lungs from Cftr+/+ mice and was necessary for the increased IL-33 release in Cftr-/- mice compared with Cftr+/+ mice. IL-33 stimulation of Cftr-/- CD4+ T cells resulted in increased type 2 cytokine production compared with Cftr+/+ CD4+ T cells. Deletion of IL-33 or ST2 decreased both type 2 inflammation and neutrophil recruitment in Cftr-/- mice compared with Cftr+/+ mice. Conclusions: Absence of CFTR reprograms airway epithelial IL-33 release and licenses IL-33-dependent inflammation. Modulation of the IL-33/ST2 axis represents a novel therapeutic target in CF type 2-high and neutrophilic inflammation.


Asunto(s)
Fibrosis Quística , Ratones , Animales , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Interleucina-33/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Alérgenos , Células Epiteliales/metabolismo
17.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824732

RESUMEN

Although profibrotic cytokines such as IL-17A and TGF-ß1 have been implicated in interstitial lung disease (ILD) pathogenesis, interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as phosphorylation of STAT3, have not been defined. Here we show by chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. Genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. Assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota on lung fibrosis severity. Analysis in female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-ß1 levels in CD4+ T cells, compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.

20.
Front Immunol ; 13: 826666, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371035

RESUMEN

Background: It is unknown whether RSV infection in infancy alters subsequent RSV immune responses. Methods: In a nested cohort of healthy, term children, peripheral blood mononuclear cells (PBMCs) were collected at ages 2-3 years to examine RSV memory T cell responses among children previously RSV infected during infancy (first year of life) compared to those RSV-uninfected during infancy. The presence vs. absence of infant RSV infection was determined through a combination of RSV molecular and serologic testing. Memory responses were measured in RSV stimulated PBMCs. Results: Compared to children not infected with RSV during the first year of life, children infected with RSV during infancy had lower memory T cell responses at ages 2-3 years to in vitro stimulation with RSV for most tested type-1 and type-17 markers for a number of memory T cell subsets. Conclusions: RSV infection in infancy has long-term effects on memory T cell responses. This is the first study to show the potential for RSV infection in infancy to have long-term effects on the immune memory irrespective of the severity of the infection. Our results suggest a possible mechanism through which infant RSV infection may result in greater risk of subsequent childhood respiratory viral morbidity, findings also relevant to vaccine development.


Asunto(s)
Leucocitos Mononucleares , Infecciones por Virus Sincitial Respiratorio , Niño , Preescolar , Estudios de Cohortes , Humanos , Lactante , Células T de Memoria , Subgrupos de Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...