Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(23): e111122, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916890

RESUMEN

Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca2+ -ATPase (PMCA) as a potential interaction partner. From proximity ligation assays, we find that aSN and PMCA colocalize at neuronal synapses, and we show that calcium expulsion is activated by aSN and PMCA. We further show that soluble, monomeric aSN activates PMCA at par with calmodulin, but independent of the autoinhibitory domain of PMCA, and highly dependent on acidic phospholipids and membrane-anchoring properties of aSN. On PMCA, the key site is mapped to the acidic lipid-binding site, located within a disordered PMCA-specific loop connecting the cytosolic A domain and transmembrane segment 3. Our studies point toward a novel physiological role of monomeric aSN as a stimulator of calcium clearance in neurons through activation of PMCA.


Asunto(s)
Calcio , alfa-Sinucleína , Calcio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de Unión
2.
Biophys J ; 122(2): 310-321, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36518077

RESUMEN

Diffusion measurements by pulsed-field gradient NMR and fluorescence correlation spectroscopy can be used to probe the hydrodynamic radius of proteins, which contains information about the overall dimension of a protein in solution. The comparison of this value with structural models of intrinsically disordered proteins is nonetheless impaired by the uncertainty of the accuracy of the methods for computing the hydrodynamic radius from atomic coordinates. To tackle this issue, we here build conformational ensembles of 11 intrinsically disordered proteins that we ensure are in agreement with measurements of compaction by small-angle x-ray scattering. We then use these ensembles to identify the forward model that more closely fits the radii derived from pulsed-field gradient NMR diffusion experiments. Of the models we examined, we find that the Kirkwood-Riseman equation provides the best description of the hydrodynamic radius probed by pulsed-field gradient NMR experiments. While some minor discrepancies remain, our results enable better use of measurements of the hydrodynamic radius in integrative modeling and for force field benchmarking and parameterization.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Radio (Anatomía)/metabolismo , Hidrodinámica , Conformación Proteica , Espectrometría de Fluorescencia , Dispersión del Ángulo Pequeño
3.
Glia ; 71(2): 431-449, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36271704

RESUMEN

As the understanding of immune responses in Alzheimer's disease (AD) is in its early phases, there remains an urgency to identify the cellular and molecular processes driving chronic inflammation. In AD, a subpopulation of astrocytes acquires a neurotoxic phenotype which prompts them to lose typical physiological features. While the underlying molecular mechanisms are still unknown, evidence suggests that myeloid differentiation primary response 88 (MyD88) adaptor protein may play a role in coordinating these cells' immune responses in AD. Herein, we combined studies in human postmortem samples with a conditional genetic knockout mouse model to investigate the link between MyD88 and astrocytes in AD. In silico analyses of bulk and cell-specific transcriptomic data from human postmortem brains demonstrated an upregulation of MyD88 expression in astrocytes in AD versus non-AD individuals. Proteomic studies revealed an increase in glial fibrillary acidic protein in multiple brain regions of AD subjects. These studies also showed that although overall MyD88 steady-state levels were unaffected by AD, this protein was enriched in astrocytes near amyloid plaques and neurofibrillary tangles. Functional studies in mice indicated that the deletion of astrocytic MyD88 protected animals from the acute synaptic toxicity and cognitive impairment caused by the intracerebroventricular administration of ß-amyloid (Aß). Lastly, unbiased proteomic analysis revealed that loss of astrocytic MyD88 resulted in altered astrocyte reactivity, lower levels of immune-related proteins, and higher expression of synaptic-related proteins in response to Aß. Our studies provide evidence of the pivotal role played by MyD88 in the regulation of astrocytes response to AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteómica , Enfermedad de Alzheimer/patología
4.
Essays Biochem ; 66(7): 901-913, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36350035

RESUMEN

Phosphorylation is the most common post-translational modification (PTM) in eukaryotes, occurring particularly frequently in intrinsically disordered proteins (IDPs). These proteins are highly flexible and dynamic by nature. Thus, it is intriguing that the addition of a single phosphoryl group to a disordered chain can impact its function so dramatically. Furthermore, as many IDPs carry multiple phosphorylation sites, the number of possible states increases, enabling larger complexities and novel mechanisms. Although a chemically simple and well-understood process, the impact of phosphorylation on the conformational ensemble and molecular function of IDPs, not to mention biological output, is highly complex and diverse. Since the discovery of the first phosphorylation site in proteins 75 years ago, we have come to a much better understanding of how this PTM works, but with the diversity of IDPs and their capacity for carrying multiple phosphoryl groups, the complexity grows. In this Essay, we highlight some of the basic effects of IDP phosphorylation, allowing it to serve as starting point when embarking on studies into this topic. We further describe how recent complex cases of multisite phosphorylation of IDPs have been instrumental in widening our view on the effect of protein phosphorylation. Finally, we put forward perspectives on the phosphorylation of IDPs, both in relation to disease and in context of other PTMs; areas where deep insight remains to be uncovered.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Fosforilación , Procesamiento Proteico-Postraduccional , Conformación Proteica
5.
Biomolecules ; 12(10)2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36291634

RESUMEN

Compared to folded proteins, the sequences of intrinsically disordered proteins (IDPs) are enriched in polar and charged amino acids. Glutamate is one of the most enriched amino acids in IDPs, while the chemically similar amino acid aspartate is less enriched. So far, the underlying functional differences between glutamates and aspartates in IDPs remain poorly understood. In this study, we examine the differential effects of aspartate and glutamates in IDPs by comparing the function and conformational ensemble of glutamate and aspartate variants of the disordered protein Dss1, using a range of assays, including interaction studies, nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and molecular dynamics simulation. First, we analyze the sequences of the rapidly growing database of experimentally verified IDPs (DisProt) and show that glutamate enrichment is not caused by a taxonomy bias in IDPs. From analyses of local and global structural properties as well as cell growth and protein-protein interactions using a model acidic IDP from yeast and three Glu/Asp variants, we find that while the Glu/Asp variants support similar function and global dimensions, the variants differ in their binding affinities and population of local transient structural elements. We speculate that these local structural differences may play roles in functional diversity, where glutamates can support increased helicity, important for folding and binding, while aspartates support extended structures and form helical caps, as well as playing more relevant roles in, e.g., transactivation domains and ion-binding.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Ácido Aspártico , Ácido Glutámico , Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Conformación Proteica
6.
Biomolecules ; 11(8)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34439840

RESUMEN

Motifs within proteins help us categorize their functions. Intrinsically disordered proteins (IDPs) are rich in short linear motifs, conferring them many different roles. IDPs are also frequently highly charged and, therefore, likely to interact with ions. Canonical calcium-binding motifs, such as the EF-hand, often rely on the formation of stabilizing flanking helices, which are a key characteristic of folded proteins, but are absent in IDPs. In this study, we probe the existence of a calcium-binding motif relevant to IDPs. Upon screening several carefully selected IDPs using NMR spectroscopy supplemented with affinity quantification by colorimetric assays, we found calcium-binding motifs in IDPs which could be categorized into at least two groups-an Excalibur-like motif, sequentially similar to the EF-hand loop, and a condensed-charge motif carrying repetitive negative charges. The motifs show an affinity for calcium typically in the ~100 µM range relevant to regulatory functions and, while calcium binding to the condensed-charge motif had little effect on the overall compaction of the IDP chain, calcium binding to Excalibur-like motifs resulted in changes in compaction. Thus, calcium binding to IDPs may serve various structural and functional roles that have previously been underreported.


Asunto(s)
Calcio/metabolismo , Proteínas Intrínsecamente Desordenadas , Precursores de Proteínas/química , Intercambiador 1 de Sodio-Hidrógeno/química , Timosina/análogos & derivados , alfa-Sinucleína/química , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Timosina/química
7.
Front Mol Biosci ; 8: 654333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968988

RESUMEN

The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to interpret experimental data using structural models. On the other hand, molecular dynamics simulations of IDPs often suffer from force-field inaccuracies, and long simulation times or enhanced sampling methods are needed to obtain converged ensembles. Here, we apply metainference and Bayesian/Maximum Entropy reweighting approaches to integrate prior knowledge of the system with experimental data, while also dealing with various sources of errors and the inherent conformational heterogeneity of IDPs. We have measured new SAXS data on the protein α-synuclein, and integrate this with simulations performed using different force fields. We find that if the force field gives rise to ensembles that are much more compact than what is implied by the SAXS data it is difficult to recover a reasonable ensemble. On the other hand, we show that when the simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data.

8.
J Mol Biol ; 431(9): 1843-1868, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30664867

RESUMEN

As the median age of the population increases, the number of individuals with Alzheimer's disease (AD) and the associated socio-economic burden are predicted to worsen. While aging and inherent genetic predisposition play major roles in the onset of AD, lifestyle, physical fitness, medical condition, and social environment have emerged as relevant disease modifiers. These environmental risk factors can play a key role in accelerating or decelerating disease onset and progression. Among known environmental risk factors, chronic exposure to various metals has become more common among the public as the aggressive pace of anthropogenic activities releases excess amount of metals into the environment. As a result, we are exposed not only to essential metals, such as iron, copper, zinc and manganese, but also to toxic metals including lead, aluminum, and cadmium, which perturb metal homeostasis at the cellular and organismal levels. Herein, we review how these metals affect brain physiology and immunity, as well as their roles in the accumulation of toxic AD proteinaceous species (i.e., ß-amyloid and tau). We also discuss studies that validate the disruption of immune-related pathways as an important mechanism of toxicity by which metals can contribute to AD. Our goal is to increase the awareness of metals as players in the onset and progression of AD.


Asunto(s)
Envejecimiento/genética , Aluminio/toxicidad , Enfermedad de Alzheimer/genética , Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Plomo/toxicidad , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Inflamación , Estilo de Vida , Aptitud Física , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Cereb Cortex ; 29(10): 4381-4397, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30590507

RESUMEN

The hippocampal dentate gyrus (DG) is a major region of the adult rodent brain in which neurogenesis occurs throughout life. The EphA4 receptor, which regulates neurogenesis and boundary formation in the developing brain, is also expressed in the adult DG, but whether it regulates adult hippocampal neurogenesis is not known. Here, we show that, in the adult mouse brain, EphA4 inhibits hippocampal precursor cell proliferation but does not affect precursor differentiation or survival. Genetic deletion or pharmacological inhibition of EphA4 significantly increased hippocampal precursor proliferation in vivo and in vitro, by blocking EphA4 forward signaling. EphA4 was expressed by mature hippocampal DG neurons but not neural precursor cells, and an EphA4 antagonist, EphA4-Fc, did not activate clonal cultures of precursors until they were co-cultured with non-precursor cells, indicating an indirect effect of EphA4 on the regulation of precursor activity. Supplementation with d-serine blocked the increased precursor proliferation induced by EphA4 inhibition, whereas blocking the interaction between d-serine and N-methyl-d-aspartate receptors (NMDARs) promoted precursor activity, even at the clonal level. Collectively, these findings demonstrate that EphA4 indirectly regulates adult hippocampal precursor proliferation and thus plays a role in neurogenesis via d-serine-regulated NMDAR signaling.


Asunto(s)
Giro Dentado/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Receptor EphA4/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor EphA4/genética , Transducción de Señal
10.
J Neuroinflammation ; 15(1): 276, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249283

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body's key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments.


Asunto(s)
Enfermedad de Alzheimer , Inflamación , Envejecimiento/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Inflamación/complicaciones , Inflamación/epidemiología , Inflamación/genética , Neuronas/metabolismo , Neuronas/patología
11.
J Mol Biol ; 430(10): 1442-1458, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29627459

RESUMEN

Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen-deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity.


Asunto(s)
Mutación con Ganancia de Función , Proteína Huntingtina/química , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Péptidos/genética , Línea Celular , Medición de Intercambio de Deuterio , Exones , Humanos , Proteína Huntingtina/metabolismo , Enlace de Hidrógeno , Dominios Proteicos , Estructura Secundaria de Proteína , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
12.
Cell Rep ; 19(5): 919-927, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467905

RESUMEN

Competing models exist in the literature for the relationship between mutant Huntingtin exon 1 (Httex1) inclusion formation and toxicity. In one, inclusions are adaptive by sequestering the proteotoxicity of soluble Httex1. In the other, inclusions compromise cellular activity as a result of proteome co-aggregation. Using a biosensor of Httex1 conformation in mammalian cell models, we discovered a mechanism that reconciles these competing models. Newly formed inclusions were composed of disordered Httex1 and ribonucleoproteins. As inclusions matured, Httex1 reconfigured into amyloid, and other glutamine-rich and prion domain-containing proteins were recruited. Soluble Httex1 caused a hyperpolarized mitochondrial membrane potential, increased reactive oxygen species, and promoted apoptosis. Inclusion formation triggered a collapsed mitochondrial potential, cellular quiescence, and deactivated apoptosis. We propose a revised model where sequestration of soluble Httex1 inclusions can remove the trigger for apoptosis but also co-aggregate other proteins, which curtails cellular metabolism and leads to a slow death by necrosis.


Asunto(s)
Amiloide/metabolismo , Apoptosis , Proteína Huntingtina/genética , Exones , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/metabolismo , Cuerpos de Inclusión/metabolismo , Potencial de la Membrana Mitocondrial , Mutación , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
13.
J Cell Biol ; 210(4): 529-39, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26283796

RESUMEN

Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodies that form around long noncoding RNA. We mapped the interactome network of paraspeckle proteins, finding enrichment of PLDs. We show that one protein, RBM14, connects key paraspeckle subcomplexes via interactions mediated by its PLD. We further show that the RBM14 PLD, as well as the PLD of another essential paraspeckle protein, FUS, is required to rescue paraspeckle formation in cells in which their endogenous counterpart has been knocked down. Similar to FUS, the RBM14 PLD also forms hydrogels with amyloid-like properties. These results suggest a role for PLD-mediated liquid-phase transitions in paraspeckle formation, highlighting this nuclear body as an excellent model system for understanding the perturbation of such processes in neurodegeneration.


Asunto(s)
Núcleo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Priones/química , Proteínas de Unión al ARN/química , Proteínas Amiloidogénicas/química , Células HeLa , Humanos , Hidrogeles/química , Péptidos y Proteínas de Señalización Intracelular/química , Priones/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA