Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354704

RESUMEN

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Asunto(s)
Antígenos CD28 , Redes Reguladoras de Genes , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transducción de Señal , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ligando CD27/genética , Ligando CD27/metabolismo , Linfocitos T CD8-positivos
2.
Elife ; 122023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883551

RESUMEN

The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD +to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss-of-function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.


Asunto(s)
Ácido Aspártico , Succinato Deshidrogenasa , Humanos , Succinato Deshidrogenasa/metabolismo , Ácido Aspártico/metabolismo , NAD/metabolismo , Ciclo del Ácido Cítrico/fisiología , Oxidación-Reducción
3.
Cell Metab ; 34(11): 1617-1619, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323232

RESUMEN

Metabolic disruption is a mainstay of cancer therapy, prompting research aimed at identifying novel metabolic targets. Despite strong effects observed in culture, three recent studies found pancreatic tumors are refractory to disruption of the metabolic enzyme GOT2, revealing complex interactions within the tumor microenvironment that bypass its conventional metabolic roles.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral
4.
Nature ; 603(7901): 477-481, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264789

RESUMEN

The tricarboxylic acid (TCA) cycle is a central hub of cellular metabolism, oxidizing nutrients to generate reducing equivalents for energy production and critical metabolites for biosynthetic reactions. Despite the importance of the products of the TCA cycle for cell viability and proliferation, mammalian cells display diversity in TCA-cycle activity1,2. How this diversity is achieved, and whether it is critical for establishing cell fate, remains poorly understood. Here we identify a non-canonical TCA cycle that is required for changes in cell state. Genetic co-essentiality mapping revealed a cluster of genes that is sufficient to compose a biochemical alternative to the canonical TCA cycle, wherein mitochondrially derived citrate exported to the cytoplasm is metabolized by ATP citrate lyase, ultimately regenerating mitochondrial oxaloacetate to complete this non-canonical TCA cycle. Manipulating the expression of ATP citrate lyase or the canonical TCA-cycle enzyme aconitase 2 in mouse myoblasts and embryonic stem cells revealed that changes in the configuration of the TCA cycle accompany cell fate transitions. During exit from pluripotency, embryonic stem cells switch from canonical to non-canonical TCA-cycle metabolism. Accordingly, blocking the non-canonical TCA cycle prevents cells from exiting pluripotency. These results establish a context-dependent alternative to the traditional TCA cycle and reveal that appropriate TCA-cycle engagement is required for changes in cell state.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Diferenciación Celular , Ciclo del Ácido Cítrico , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Animales , Ácido Cítrico/metabolismo , Células Madre Embrionarias , Mamíferos/metabolismo , Ratones , Mitocondrias/metabolismo , Células Madre Pluripotentes
5.
Chembiochem ; 23(6): e202100633, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35061295

RESUMEN

The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) is an important regulator of proteostasis. Despite playing an important role in maintaining proteostasis, little progress has been made in developing small molecules that regulate ubiquitin transfer by CHIP. Here we used differential scanning fluorimetry to identify compounds that bound CHIP. Compounds that bound CHIP were then analyzed by quantitative ubiquitination assays to identify those that altered CHIP function. One compound, MS.001, inhibited both the chaperone binding and ubiquitin ligase activity of CHIP at low micromolar concentrations. Interestingly, we found that MS.001 did not have activity against isolated U-box or tetratricopeptide (TPR) domains, but instead only inhibited full-length CHIP. Using in silico docking we identified a potential MS.001 binding site on the linker domain of CHIP and mutation of this site rendered CHIP resistant to MS.001. Together our data identify an inhibitor of the E3 ligase CHIP and provides insight into the development of compounds that regulate CHIP activity.


Asunto(s)
Proteína C , Ubiquitina-Proteína Ligasas , Proteína C/genética , Proteína C/metabolismo , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
J Biol Chem ; 293(8): 2735-2743, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29317501

RESUMEN

The accumulation of misfolded proteins promotes protein aggregation and neuronal death in many neurodegenerative diseases. To counteract misfolded protein accumulation, neurons have pathways that recognize and refold or degrade aggregation-prone proteins. One U-box-containing E3 ligase, C terminus of Hsc70-interacting protein (CHIP), plays a key role in this process, targeting misfolded proteins for proteasomal degradation. CHIP plays a protective role in mouse models of neurodegenerative disease, and in humans, mutations in CHIP cause spinocerebellar ataxia autosomal recessive type 16 (SCAR16), a fatal neurodegenerative disease characterized by truncal and limb ataxia that results in gait instability. Here, we systematically analyzed CHIP mutations that cause SCAR16 and found that most SCAR16 mutations destabilize CHIP. This destabilization caused mutation-specific defects in CHIP activity, including increased formation of soluble oligomers, decreased interactions with chaperones, diminished substrate ubiquitination, and reduced steady-state levels in cells. Consistent with decreased CHIP stability promoting its dysfunction in SCAR16, most mutant proteins recovered activity when the assays were performed below the mutants' melting temperature. Together, our results have uncovered the molecular basis of genetic defects in CHIP function that cause SCAR16. Our insights suggest that compounds that improve the thermostability of genetic CHIP variants may be beneficial for treating patients with SCAR16.


Asunto(s)
Regulación hacia Abajo , Modelos Moleculares , Mutación , Ataxias Espinocerebelosas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Sustitución de Aminoácidos , Estabilidad de Enzimas , Polarización de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Calor/efectos adversos , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Ataxias Espinocerebelosas/enzimología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...