Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(4): e0266566, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35413056

RESUMEN

The SIRPα-CD47 axis plays an important role in T cell recruitment to sites of immune reaction and inflammation but its role in T cell antigen priming is incompletely understood. Employing OTII TCR transgenic mice bred to Cd47-/- (Cd47KO) or SKI mice, a knock-in transgenic animal expressing non-signaling cytoplasmic-truncated SIRPα, we investigated how the SIRPα-CD47 axis contributes to antigen priming. Here we show that adoptive transfer of Cd47KO or SKI Ova-specific CD4+ T cells (OTII) into Cd47KO and SKI recipients, followed by Ova immunization, elicited reduced T cell division and proliferation indices, increased apoptosis, and reduced expansion compared to transfer into WT mice. We confirmed prior reports that splenic T cell zone, CD4+ conventional dendritic cells (cDCs) and CD4+ T cell numbers were reduced in Cd47KO and SKI mice. We report that in vitro derived DCs from Cd47KO and SKI mice exhibited impaired migration in vivo and exhibited reduced CD11c+ DC proximity to OTII T cells in T cell zones after Ag immunization, which correlates with reduced TCR activation in transferred OTII T cells. These findings suggest that reduced numbers of CD4+ cDCs and their impaired migration contributes to reduced T cell-DC proximity in splenic T cell zone and reduced T cell TCR activation, cell division and proliferation, and indirectly increased T cell apoptosis.


Asunto(s)
Antígeno CD47 , Receptores Inmunológicos , Bazo , Animales , Antígenos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Comunicación Celular , Células Dendríticas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Bazo/inmunología , Bazo/metabolismo , Linfocitos T/metabolismo
2.
JCI Insight ; 6(21)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34591795

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a well-characterized animal model of multiple sclerosis. During the early phase of EAE, infiltrating monocytes and monocyte-derived macrophages contribute to T cell recruitment, especially CD4+ T cells, into the CNS, resulting in neuronal demyelination; however, in later stages, they promote remyelination and recovery by removal of myelin debris by phagocytosis. Signal regulatory protein α and CD47 are abundantly expressed in the CNS, and deletion of either molecule is protective in myelin oligodendrocyte glycoprotein-induced EAE because of failed effector T cell expansion and trafficking. Here we report that treatment with the function blocking CD47 Ab Miap410 substantially reduced the infiltration of pathogenic immune cells but impaired recovery from paresis. The underlying mechanism was by blocking the emergence of CD11chiMHCIIhi microglia at peak disease that expressed receptors for phagocytosis, scavenging, and lipid catabolism, which mediated clearance of myelin debris and the transition of monocytes to macrophages in the CNS. In the recovery phase of EAE, Miap410 Ab-treated mice had worsening paresis with sustained inflammation and limited remyelination as compared with control Ab-treated mice. In summary, Ab blockade of CD47 impaired resolution of CNS inflammation, thus worsening EAE.


Asunto(s)
Antígeno CD47/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Macrófagos/metabolismo , Microglía/metabolismo , Monocitos/metabolismo , Fagocitosis/genética , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados
3.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156982

RESUMEN

The stimulator of IFN genes (STING) protein senses cyclic dinucleotides released in response to double-stranded DNA and functions as an adaptor molecule for type I IFN (IFNI) signaling by activating IFNI-stimulated genes (ISG). We found impaired T cell infiltration into the peritoneum in response to TNF-α in global and EC-specific STING-/- mice and discovered that T cell transendothelial migration (TEM) across mouse and human endothelial cells (EC) deficient in STING was strikingly reduced compared with control EC, whereas T cell adhesion was not impaired. STING-/- T cells showed no defect in TEM or adhesion to EC, or immobilized endothelial cell-expressed molecules ICAM1 and VCAM1, compared with WT T cells. Mechanistically, CXCL10, an ISG and a chemoattractant for T cells, was dramatically reduced in TNF-α-stimulated STING-/- EC, and genetic loss or pharmacologic antagonisms of IFNI receptor (IFNAR) pathway reduced T cell TEM. Our data demonstrate a central role for EC-STING during T cell TEM that is dependent on the ISG CXCL10 and on IFNI/IFNAR signaling.


Asunto(s)
Interferón Tipo I , Proteínas de la Membrana/inmunología , Receptor de Interferón alfa y beta , Linfocitos T , Migración Transendotelial y Transepitelial/inmunología , Animales , Inmunidad Innata , Molécula 1 de Adhesión Intercelular/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Ratones , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/inmunología
4.
Mucosal Immunol ; 14(2): 331-341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32561828

RESUMEN

Dysregulated neutrophil (PMN) transmigration across epithelial surfaces (TEpM) significantly contributes to chronic inflammatory diseases, yet mechanisms defining this process remain poorly understood. In the intestine, uncontrolled PMN TEpM is a hallmark of disease flares in ulcerative colitis. Previous in vitro studies directed at identifying molecular determinants that mediate TEpM have shown that plasma membrane proteins including CD47 and CD11b/CD18 play key roles in regulating PMN TEpM across monolayers of intestinal epithelial cells. Here, we show that CD47 modulates PMN TEpM in vivo using an ileal loop assay. Importantly, using novel tissue-specific CD47 knockout mice and in vitro approaches, we report that PMN-expressed, but not epithelial-expressed CD47 plays a major role in regulating PMN TEpM. We show that CD47 associates with CD11b/CD18 in the plasma membrane of PMN, and that loss of CD47 results in impaired CD11b/CD18 activation. In addition, in vitro and in vivo studies using function blocking antibodies support a role of CD47 in regulating CD11b-dependent PMN TEpM and chemotaxis. Taken together, these findings provide new insights for developing approaches to target dysregulated PMN infiltration in the intestine. Moreover, tissue-specific CD47 knockout mice constitute an important new tool to study contributions of cells expressing CD47 to inflammation in vivo.


Asunto(s)
Antígeno CD47/metabolismo , Inflamación/inmunología , Intestinos/inmunología , Neutrófilos/inmunología , Animales , Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Antígeno CD47/genética , Células Cultivadas , Quimiotaxis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila , Especificidad de Órganos , Migración Transendotelial y Transepitelial
5.
Nat Commun ; 11(1): 6396, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328477

RESUMEN

Clinical studies reveal changes in blood eosinophil counts and eosinophil cationic proteins that may serve as risk factors for human coronary heart diseases. Here we report an increase of blood or heart eosinophil counts in humans and mice after myocardial infarction (MI), mostly in the infarct region. Genetic or inducible depletion of eosinophils exacerbates cardiac dysfunction, cell death, and fibrosis post-MI, with concurrent acute increase of heart and chronic increase of splenic neutrophils and monocytes. Mechanistic studies reveal roles of eosinophil IL4 and cationic protein mEar1 in blocking H2O2- and hypoxia-induced mouse and human cardiomyocyte death, TGF-ß-induced cardiac fibroblast Smad2/3 activation, and TNF-α-induced neutrophil adhesion on the heart endothelial cell monolayer. In vitro-cultured eosinophils from WT mice or recombinant mEar1 protein, but not eosinophils from IL4-deficient mice, effectively correct exacerbated cardiac dysfunctions in eosinophil-deficient ∆dblGATA mice. This study establishes a cardioprotective role of eosinophils in post-MI hearts.


Asunto(s)
Eosinófilos/fisiología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Anciano , Animales , Muerte Celular , Toxina Diftérica/toxicidad , Electrocardiografía , Eosinófilos/efectos de los fármacos , Eosinófilos/patología , Femenino , Fibroblastos/patología , Fibroblastos/fisiología , Humanos , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/patología , Ribonucleasas/genética , Ribonucleasas/metabolismo
6.
Clin Chem ; 66(12): 1562-1572, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32897389

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 21 million people worldwide since August 16, 2020. Compared to PCR and serology tests, SARS-CoV-2 antigen assays are underdeveloped, despite their potential to identify active infection and monitor disease progression. METHODS: We used Single Molecule Array (Simoa) assays to quantitatively detect SARS-CoV-2 spike, S1 subunit, and nucleocapsid antigens in the plasma of patients with coronavirus disease (COVID-19). We studied plasma from 64 patients who were COVID-19 positive, 17 who were COVID-19 negative, and 34 prepandemic patients. Combined with Simoa anti-SARS-CoV-2 serological assays, we quantified changes in 31 SARS-CoV-2 biomarkers in 272 longitudinal plasma samples obtained for 39 patients with COVID-19. Data were analyzed by hierarchical clustering and were compared to longitudinal RT-PCR test results and clinical outcomes. RESULTS: SARS-CoV-2 S1 and N antigens were detectable in 41 out of 64 COVID-19 positive patients. In these patients, full antigen clearance in plasma was observed a mean ± 95% CI of 5 ± 1 days after seroconversion and nasopharyngeal RT-PCR tests reported positive results for 15 ± 5 days after viral-antigen clearance. Correlation between patients with high concentrations of S1 antigen and ICU admission (77%) and time to intubation (within 1 day) was statistically significant. CONCLUSIONS: The reported SARS-CoV-2 Simoa antigen assay is the first to detect viral antigens in the plasma of patients who were COVID-19 positive to date. These data show that SARS-CoV-2 viral antigens in the blood are associated with disease progression, such as respiratory failure, in COVID-19 cases with severe disease.


Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , COVID-19/diagnóstico , Progresión de la Enfermedad , SARS-CoV-2/química , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , Prueba Serológica para COVID-19 , Proteínas de la Nucleocápside de Coronavirus/sangre , Femenino , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Intubación , Límite de Detección , Masculino , Persona de Mediana Edad , Fosfoproteínas/sangre , Pronóstico , Subunidades de Proteína/sangre , Glicoproteína de la Espiga del Coronavirus/sangre
7.
Blood ; 134(17): 1430-1440, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31383641

RESUMEN

Antibodies that bind CD47 on tumor cells and prevent interaction with SIRPα on phagocytes are active against multiple cancer types including T-cell lymphoma (TCL). Here we demonstrate that surface CD47 is heterogeneously expressed across primary TCLs, whereas major histocompatibility complex (MHC) class I, which can also suppress phagocytosis, is ubiquitous. Multiple monoclonal antibodies (mAbs) that block CD47-SIRPα interaction promoted phagocytosis of TCL cells, which was enhanced by cotreatment with antibodies targeting MHC class I. Expression levels of surface CD47 and genes that modulate CD47 pyroglutamation did not correlate with the extent of phagocytosis induced by CD47 blockade in TCL lines. In vivo treatment of multiple human TCL patient-derived xenografts or an immunocompetent murine TCL model with a short course of anti-CD47 mAb markedly reduced lymphoma burden and extended survival. Depletion of macrophages reduced efficacy in vivo, whereas depletion of neutrophils had no effect. F(ab')2-only fragments of anti-CD47 antibodies failed to induce phagocytosis by human macrophages, indicating a requirement for Fc-Fcγ receptor interactions. In contrast, F(ab')2-only fragments increased phagocytosis by murine macrophages independent of SLAMF7-Mac-1 interaction. Full-length anti-CD47 mAbs also induced phagocytosis by Fcγ receptor-deficient murine macrophages. An immunoglobulin G1 anti-CD47 mAb induced phagocytosis and natural killer cell-mediated cytotoxicity of TCL cells that was augmented by cotreatment with mogamulizumab, an anti-CCR4 mAb, or a mAb blocking MHC class I. These studies help explain the disparate activity of monotherapy with agents that block CD47 in murine models compared with patients. They also have direct translational implications for the deployment of anti-CD47 mAbs alone or in combination.


Asunto(s)
Antígenos de Diferenciación/inmunología , Antineoplásicos Inmunológicos/farmacología , Antígeno CD47/inmunología , Linfoma de Células T/tratamiento farmacológico , Receptores de IgG/inmunología , Receptores Inmunológicos/inmunología , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno CD47/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Linfoma de Células T/inmunología , Linfoma de Células T/patología , Ratones , Receptores Fc/inmunología
8.
Sci Rep ; 9(1): 10608, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337788

RESUMEN

CD47, also known as integrin-associated protein (IAP), is a transmembrane protein with multiple biological functions including regulation of efferocytosis and leukocyte trafficking. In this study we investigated the effect of CD47-deficiency on atherosclerosis using a model of adeno-associated virus (AAV)-induced hypercholesterolemia. We observed increased plaque formation in CD47 null mice compared to wild-type controls. Loss of CD47 caused activation of dendritic cells, T cells and natural killer (NK) cells, indicating an important role for CD47 in regulating immunity. In particular, Cd47 deficiency increased the proportion of IFN-γ producing CD90+ NK cells. Treatment with depleting anti-NK1.1 monoclonal antibody (mAb), but not depleting anti-CD4/CD8 mAbs, equalized atherosclerotic burden, suggesting NK cells were involved in the enhanced disease in Cd47 deficient mice. Additional studies revealed that levels of CD90+ and IFN-γ+ NK cells were expanded in atherosclerotic aorta and that CD90+ NK cells produce more IFN-γ than CD90- NK cells. Finally, we demonstrate that anti-CD47 (MIAP410) causes splenomegaly and activation of DCs and T cells, without affecting NK cell activation. In summary, we demonstrate that loss of CD47 causes increased lymphocyte activation that results in increased atherosclerosis.


Asunto(s)
Aterosclerosis/etiología , Antígeno CD47/deficiencia , Activación de Linfocitos , Animales , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/metabolismo
9.
J Community Engagem Scholarsh ; 10(1): 81-90, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30581538

RESUMEN

Community engagement (CE) has come to the forefront of academic health centers' (AHCs) work because of two recent trends: the shift from a more traditional 'treatment of disease' model of health care to a population health paradigm (Gourevitch, 2014), and increased calls from funding agencies to include CE in research activities (Bartlett, Barnes, & McIver, 2014). As defined by the Centers for Disease Control and Prevention, community engagement is "the process of working collaboratively with and through groups of people affiliated by geographic proximity, special interest, or similar situations to address issues affecting the well-being of those people" (Centers for Disease Control and Prevention (CDC), 1997, p. 9). AHCs are increasingly called on to communicate details of their CE efforts to key stakeholders and to demonstrate their effectiveness. The population health paradigm values preventive care and widens the traditional purview of medicine to include social determinants of patients' health (Gourevitch, 2014). Thus, it has become increasingly important to join with communities in population health improvement efforts that address behavioral, social, and environmental determinants of health (Michener, et al., 2012; Aguilar-Gaxiola, et al., 2014; Blumenthal & Mayer, 1996). This CE can occur within multiple contexts in AHCs (Ahmed & Palermo, 2010; Kastor, 2011) including in education, clinical activities, research, health policy, and community service.

10.
Arterioscler Thromb Vasc Biol ; 38(8): 1901-1912, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29976772

RESUMEN

Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1ß-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.


Asunto(s)
Coagulación Sanguínea , Catepsina G/metabolismo , Trampas Extracelulares/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Interleucina-1alfa/metabolismo , Neutrófilos/enzimología , Comunicación Paracrina , Tromboplastina/metabolismo , Adhesión Celular , Técnicas de Cocultivo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Transducción de Señal , Células THP-1 , Tromboplastina/genética , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...