Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812347

RESUMEN

Transcriptome-wide association studies (TWAS) can provide single gene resolution for candidate genes in plants, complementing genome-wide association studies (GWAS) but efforts in plants have been met with, at best, mixed success. We generated expression data from 693 maize genotypes, measured in a common field experiment, sampled over a 2-h period to minimize diurnal and environmental effects, using full-length RNA-seq to maximize the accurate estimation of transcript abundance. TWAS could identify roughly 10 times as many genes likely to play a role in flowering time regulation as GWAS conducted data from the same experiment. TWAS using mature leaf tissue identified known true-positive flowering time genes known to act in the shoot apical meristem, and trait data from a new environment enabled the identification of additional flowering time genes without the need for new expression data. eQTL analysis of TWAS-tagged genes identified at least one additional known maize flowering time gene through trans-eQTL interactions. Collectively these results suggest the gene expression resource described here can link genes to functions across different plant phenotypes expressed in a range of tissues and scored in different experiments.

2.
Plant Physiol ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37925649

RESUMEN

Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of N fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multi-scale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.

3.
Gigascience ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997208

RESUMEN

Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data-18M markers-from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many significant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Marcadores Genéticos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays/genética
4.
Plant Physiol ; 189(2): 906-921, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166829

RESUMEN

Nannochloropsis oceanica, like other stramenopile microalgae, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA). We observed that fatty acid desaturases (FADs) involved in LC-PUFA biosynthesis were among the strongest blue light-induced genes in N. oceanica CCMP1779. Blue light was also necessary for maintaining LC-PUFA levels in CCMP1779 cells, and growth under red light led to a reduction in EPA content. Aureochromes are stramenopile-specific proteins that contain a light-oxygen-voltage (LOV)-sensing domain that associates with a flavin mononucleotide and is able to sense blue light. These proteins also contain a basic leucine zipper DNA-binding motif and can act as blue light-regulated transcription factors by associating with an E-box like motif, which we found enriched in the promoters of blue light-induced genes. We demonstrated that, in vitro, two CCMP1779 aureochromes were able to absorb blue light. Moreover, the loss or reduction of the expression of any of the three aureochrome genes led to a decrease in the blue light-specific induction of several FADs in CCMP1779. EPA content was also significantly reduced in NoAUREO2 and NoAUREO4 mutants. Taken together, our results indicate that aureochromes mediate blue light-dependent regulation of LC-PUFA content in N. oceanica CCMP1779 cells.


Asunto(s)
Microalgas , Estramenopilos , Ácido Eicosapentaenoico/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Luz , Microalgas/genética , Microalgas/metabolismo , Estramenopilos/metabolismo
5.
DNA Res ; 27(3)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32642754

RESUMEN

Chiococca alba (L.) Hitchc. (snowberry), a member of the Rubiaceae, has been used as a folk remedy for a range of health issues including inflammation and rheumatism and produces a wealth of specialized metabolites including terpenes, alkaloids, and flavonoids. We generated a 558 Mb draft genome assembly for snowberry which encodes 28,707 high-confidence genes. Comparative analyses with other angiosperm genomes revealed enrichment in snowberry of lineage-specific genes involved in specialized metabolism. Synteny between snowberry and Coffea canephora Pierre ex A. Froehner (coffee) was evident, including the chromosomal region encoding caffeine biosynthesis in coffee, albeit syntelogs of N-methyltransferase were absent in snowberry. A total of 27 putative terpene synthase genes were identified, including 10 that encode diterpene synthases. Functional validation of a subset of putative terpene synthases revealed that combinations of diterpene synthases yielded access to products of both general and specialized metabolism. Specifically, we identified plausible intermediates in the biosynthesis of merilactone and ribenone, structurally unique antimicrobial diterpene natural products. Access to the C. alba genome will enable additional characterization of biosynthetic pathways responsible for health-promoting compounds in this medicinal species.


Asunto(s)
Rubiaceae/genética , Rubiaceae/metabolismo , Terpenos/metabolismo , Alcaloides/metabolismo , Transferasas Alquil y Aril/genética , Vías Biosintéticas/genética , Café , Flavonoides/metabolismo , Flores , Frutas , Genoma de Planta , Haploidia , Anotación de Secuencia Molecular , Filogenia , Rubiaceae/enzimología , Terpenos/química , Nicotiana/genética
6.
Plant Genome ; 12(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31290929

RESUMEN

Potato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses. Dihaploid potatoes are usually produced via pollination by haploid inducer lines known as in vitro pollinators (IVP). In vitro pollinator chromosomes are selectively degraded from initially full hybrid embryos, resulting in 2× seed. During this process, somatic translocation of IVP DNA may occur. In this study, a genome-wide approach was used to identify such events and other chromosome-scale abnormalities in a population of 95 dihaploids derived from a cross between potato cultivar Superior and the haploid inducing line IVP101. Most Superior dihaploids showed translocation rates of <1% at 16,947,718 assayable sites, yet two dihaploids showed translocation rates of 1.86 and 1.60%. Allelic ratios at translocation sites suggested that most translocations occurred in individual cell lineages and were thus not present in all cells of the adult plants. Translocations were enriched in sites associated with high gene expression and H3K4 dimethylation and H4K5 acetylation, suggesting that they tend to occur in regions of open chromatin. The translocations likely result as a consequence of double-stranded break repair in the dihaploid genomes via homologous recombination during which IVP chromosomes are used as templates. Additionally, primary trisomy was observed in eight individuals. As the trisomic chromosomes were derived from Superior, meiotic nondisjunction may be common in potato.


Asunto(s)
Cromosomas de las Plantas , Diploidia , Fitomejoramiento , Solanum tuberosum/genética , Translocación Genética , Tetraploidía
7.
Plant J ; 99(1): 112-127, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883973

RESUMEN

Circadian clocks allow organisms to predict environmental changes caused by the rotation of the Earth. Although circadian rhythms are widespread among different taxa, the core components of circadian oscillators are not conserved and differ between bacteria, plants, animals and fungi. Stramenopiles are a large group of organisms in which circadian rhythms have been only poorly characterized and no clock components have been identified. We have investigated cell division and molecular rhythms in Nannochloropsis species. In the four strains tested, cell division occurred principally during the night period under diel conditions; however, these rhythms damped within 2-3 days after transfer to constant light. We developed firefly luciferase reporters for the long-term monitoring of in vivo transcriptional rhythms in two Nannochlropsis species, Nannochloropsis oceanica CCMP1779 and Nannochloropsis salina CCMP537. The reporter lines express anticipatory behavior under light/dark cycles and free-running bioluminescence rhythms with periods of ~21-31 h that damped within ~3-4 days under constant light. Using different entrainment regimes, we demonstrate that these rhythms are modulated by a circadian-type oscillator. In addition, the phase of free-running luminescence rhythms can be modulated pharmacologically using a CK1 ε/δ inhibitor, suggesting a role of this kinase in the Nannochloropsis clock. Together with the molecular and genomic tools available for Nannochloropsis species, these reporter lines represent an excellent system for future studies on the molecular mechanisms of stramenopile circadian oscillators.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Estramenopilos/fisiología , Estramenopilos/genética
8.
Chembiochem ; 20(1): 83-87, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30300974

RESUMEN

Genome mining is a routine technique in microbes for discovering biosynthetic pathways. In plants, however, genomic information is not commonly used to identify novel biosynthesis genes. Here, we present the genome of the medicinal plant and oxindole monoterpene indole alkaloid (MIA) producer Gelsemium sempervirens (Gelsemiaceae). A gene cluster from Catharanthus roseus, which is utilized at least six enzymatic steps downstream from the last common intermediate shared between the two plant alkaloid types, is found in G. sempervirens, although the corresponding enzymes act on entirely different substrates. This study provides insights into the common genomic context of MIA pathways and is an important milestone in the further elucidation of the Gelsemium oxindole alkaloid pathway.


Asunto(s)
Gelsemium/genética , Genes de Plantas , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Familia de Multigenes , Catharanthus/genética , Estudios de Asociación Genética , Genoma , Raíces de Plantas/genética
9.
Plant J ; 94(3): 562-570, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29405524

RESUMEN

Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding.


Asunto(s)
Alcaloides/metabolismo , Genoma de Planta/genética , Tubérculos de la Planta/metabolismo , Solanum/genética , Diploidia , Genes de Plantas/genética , Tubérculos de la Planta/genética , Análisis de Secuencia de ADN , Solanum/anatomía & histología , Solanum/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(46): E9999-E10008, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087343

RESUMEN

Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid Stuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14-16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (Stuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato's maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly Smicrodontum in long-day-adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day-adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential.


Asunto(s)
Evolución Biológica , Domesticación , Genes de Plantas/genética , Variación Genética , Tubérculos de la Planta/genética , Solanum tuberosum/genética , Solanum/genética , Alelos , Metabolismo de los Hidratos de Carbono/genética , Ciclo Celular/genética , Cromosomas de las Plantas , Ritmo Circadiano/genética , Diploidia , Endorreduplicación/genética , Fertilidad/genética , Gametogénesis/genética , Regulación de la Expresión Génica de las Plantas , Pool de Genes , Genotipo , Haplotipos , Redes y Vías Metabólicas/genética , América del Norte , Perú , Fenotipo , Filogenia , Polen/genética , Polen/crecimiento & desarrollo , Poliploidía , América del Sur , Especificidad de la Especie , Tetraploidía
11.
Genome Biol ; 18(1): 203, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084572

RESUMEN

BACKGROUND: Meiotic recombination is the foundation for genetic variation in natural and artificial populations of eukaryotes. Although genetic maps have been developed for numerous plant species since the late 1980s, few of these maps have provided the necessary resolution needed to investigate the genomic and epigenomic features underlying meiotic crossovers. RESULTS: Using a whole genome sequencing-based approach, we developed two high-density reference-based haplotype maps using diploid potato clones as parents. The vast majority (81%) of meiotic crossovers were mapped to less than 5 kb. The fine-scale accuracy of crossover detection was validated by Sanger sequencing for a subset of ten crossover events. We demonstrate that crossovers reside in genomic regions of "open chromatin", which were identified based on hypersensitivity to DNase I digestion and association with H3K4me3-modified nucleosomes. The genomic regions spanning crossovers were significantly enriched with the Stowaway family of miniature inverted-repeat transposable elements (MITEs). The occupancy of Stowaway elements in gene promoters is concomitant with an increase in recombination rate. A generalized linear model identified the presence of Stowaway elements as the third most important genomic or chromatin feature behind genes and open chromatin for predicting crossover formation over 10-kb windows. CONCLUSIONS: Collectively, our results suggest that meiotic crossovers in potato are largely determined by the local chromatin status, marked by accessible chromatin, H3K4me3-modified nucleosomes, and the presence of Stowaway transposons.


Asunto(s)
Cromatina/química , Intercambio Genético , Elementos Transponibles de ADN , Meiosis/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Genómica , Haplotipos
12.
Plant J ; 92(4): 624-637, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28869794

RESUMEN

Relative to homozygous diploids, the presence of multiple homologs or homeologs in polyploids affords greater tolerance to mutations that can impact genome evolution. In this study, we describe sequence and structural variation in the genomes of six accessions of cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid and their impact on the transcriptome. Sequence diversity was high with a mean single nucleotide polymorphisms (SNP) rate of approximately 1 per 50 bases suggestive of high levels of allelic diversity. Additive gene expression was observed in leaves (3605 genes) and tubers (6156 genes) that contrasted the preferential allele expression of between 2180 and 3502 and 3367 and 5270 genes in the leaf and tuber transcriptome, respectively. Preferential allele expression was significantly associated with evolutionarily conserved genes suggesting selection of specific alleles of genes responsible for biological processes common to angiosperms during the breeding selection process. Copy number variation was rampant with between 16 098 and 18 921 genes in each cultivar exhibiting duplication or deletion. Copy number variable genes tended to be evolutionarily recent, lowly expressed, and enriched in genes that show increased expression in response to biotic and abiotic stress treatments suggestive of a role in adaptation. Gene copy number impacts on gene expression were detected with 528 genes having correlations between copy number and gene expression. Collectively, these data suggest that in addition to allelic variation of coding sequence, the heterogenous nature of the tetraploid potato genome contributes to a highly dynamic transcriptome impacted by allele preferential and copy number-dependent expression effects.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Polimorfismo de Nucleótido Simple/genética , Solanum tuberosum/genética , Alelos , Diploidia , Redes y Vías Metabólicas , Hojas de la Planta/genética , Tubérculos de la Planta/genética , Tetraploidía
13.
PLoS One ; 11(1): e0147229, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26789840

RESUMEN

Next-generation DNA sequencing has revolutionized the study of biology. However, the short read lengths of the dominant instruments complicate assembly of complex genomes and haplotype phasing of mixtures of similar sequences. Here we demonstrate a method to reconstruct the sequences of individual nucleic acid molecules up to 11.6 kilobases in length from short (150-bp) reads. We show that our method can construct 99.97%-accurate synthetic reads from bacterial, plant, and animal genomic samples, full-length mRNA sequences from human cancer cell lines, and individual HIV env gene variants from a mixture. The preparation of multiple samples can be multiplexed into a single tube, further reducing effort and cost relative to competing approaches. Our approach generates sequencing libraries in three days from less than one microgram of DNA in a single-tube format without custom equipment or specialized expertise.


Asunto(s)
Algoritmos , Genoma , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , ADN Bacteriano/genética , ADN de Neoplasias/genética , ADN de Plantas/genética , Biblioteca de Genes , Humanos
14.
Plant Cell ; 28(2): 388-405, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26772996

RESUMEN

Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Duplicación de Gen , Variación Genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Genotipo , Hibridación Fluorescente in Situ , Fenotipo , Filogenia , Reproducción Asexuada/genética , Solanum tuberosum/fisiología , Especificidad de la Especie
15.
Plant Physiol ; 170(1): 528-39, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26586835

RESUMEN

PSEUDO-RESPONSE REGULATORs (PRRs) play overlapping and distinct roles in maintaining circadian rhythms and regulating diverse biological processes, including the photoperiodic control of flowering, growth, and abiotic stress responses. PRRs act as transcriptional repressors and associate with chromatin via their conserved C-terminal CCT (CONSTANS, CONSTANS-like, and TIMING OF CAB EXPRESSION 1 [TOC1/PRR1]) domains by a still-poorly understood mechanism. Here, we identified genome-wide targets of PRR9 using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and compared them with PRR7, PRR5, and TOC1/PRR1 ChIP-seq data. We found that PRR binding sites are located within genomic regions of low nucleosome occupancy and high DNase I hypersensitivity. Moreover, conserved noncoding regions among Brassicaceae species are enriched around PRR binding sites, indicating that PRRs associate with functionally relevant cis-regulatory regions. The PRRs shared a significant number of binding regions, and our results indicate that they coordinately restrict the expression of target genes to around dawn. A G-box-like motif was overrepresented at PRR binding regions, and we showed that this motif is necessary for mediating transcriptional regulation of CIRCADIAN CLOCK ASSOCIATED 1 and PRR9 by the PRRs. Our results further our understanding of how PRRs target specific promoters and provide an extensive resource for studying circadian regulatory networks in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Genoma de Planta , Motivos de Nucleótidos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant J ; 83(6): 1097-113, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26216534

RESUMEN

Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N. oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N. oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis.


Asunto(s)
Regulación de la Expresión Génica , Estramenopilos/fisiología , Acetilcoenzima A/metabolismo , Carbono/metabolismo , Ciclo Celular/genética , Ciclo del Ácido Cítrico/fisiología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Glucólisis , Metabolismo de los Lípidos/genética , Fotoperiodo , Estramenopilos/genética , Estramenopilos/metabolismo
17.
G3 (Bethesda) ; 4(12): 2461-71, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25354782

RESUMEN

Endogenous (circadian) and exogenous (e.g., diel) biological rhythms are a prominent feature of many living systems. In green algal species, knowledge of the extent of diel rhythmicity of genome-wide gene expression, its evolution, and its cis-regulatory mechanism is limited. In this study, we identified cyclically expressed genes under diel conditions in Chlamydomonas reinhardtii and found that ~50% of the 17,114 annotated genes exhibited cyclic expression. These cyclic expression patterns indicate a clear succession of biological processes during the course of a day. Among 237 functional categories enriched in cyclically expressed genes, >90% were phase-specific, including photosynthesis, cell division, and motility-related processes. By contrasting cyclic expression between C. reinhardtii and Arabidopsis thaliana putative orthologs, we found significant but weak conservation in cyclic gene expression patterns. On the other hand, within C. reinhardtii cyclic expression was preferentially maintained between duplicates, and the evolution of phase between paralogs is limited to relatively minor time shifts. Finally, to better understand the cis regulatory basis of diel expression, putative cis-regulatory elements were identified that could predict the expression phase of a subset of the cyclic transcriptome. Our findings demonstrate both the prevalence of cycling genes as well as the complex regulatory circuitry required to control cyclic expression in a green algal model, highlighting the need to consider diel expression in studying algal molecular networks and in future biotechnological applications.


Asunto(s)
Evolución Biológica , Chlamydomonas reinhardtii/genética , Genoma de Planta , Arabidopsis/genética , Análisis por Conglomerados , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ARN , Máquina de Vectores de Soporte , Transcriptoma
18.
J Exp Bot ; 65(20): 6003-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25147271

RESUMEN

In Arabidopsis, the circadian clock regulates UV-B-mediated changes in gene expression. Here it is shown that circadian clock components are able to inhibit UV-B-induced gene expression in a gene-by-gene-specific manner and act downstream of the initial UV-B sensing by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) and UVR8 (UV RESISTANCE LOCUS 8). For example, the UV-B induction of ELIP1 (EARLY LIGHT INDUCIBLE PROTEIN 1) and PRR9 (PSEUDO-RESPONSE REGULATOR 9) is directly regulated by LUX (LUX ARRYTHMO), ELF4 (EARLY FLOWERING 4), and ELF3. Moreover, time-dependent changes in plant sensitivity to UV-B damage were observed. Wild-type Arabidopsis plants, but not circadian clock mutants, were more sensitive to UV-B treatment during the night periods than during the light periods under diel cycles. Experiments performed under short cycles of 6h light and 6h darkness showed that the increased stress sensitivity of plants to UV-B in the dark only occurred during the subjective night and not during the subjective day in wild-type seedlings. In contrast, the stress sensitivity of Arabidopsis mutants with a compromised circadian clock was still influenced by the light condition during the subjective day. Taken together, the results show that the clock and light modulate plant sensitivity to UV-B stress at different times of the day.


Asunto(s)
Arabidopsis/fisiología , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Transducción de Señal , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Oscuridad , Fotoperiodo , Proteínas de Plantas/genética , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Estrés Fisiológico , Factores de Tiempo , Rayos Ultravioleta
19.
Plant J ; 76(1): 101-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23808423

RESUMEN

Up to 30% of the plant transcriptome is circadian clock-regulated in different species; however, we still lack a good understanding of the mechanisms involved in these genome-wide oscillations in gene expression. Here, we show that PSEUDO-RESPONSE REGULATOR 7 (PRR7), a central component of the Arabidopsis clock, is directly involved in the repression of master regulators of plant growth, light signaling and stress responses. The expression levels of most PRR7 target genes peak around dawn, in an antiphasic manner to PRR7 protein levels, and were repressed by PRR7. These findings indicate that PRR7 is important for cyclic gene expression by repressing the transcription of morning-expressed genes. In particular we found an enrichment of the genes involved in abiotic stress responses, and in accordance we observed that PRR7 is involved in the oxidative stress response and the regulation of stomata conductance.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Transducción de Señal , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Hierro/farmacología , Luz , Mutación , Estrés Oxidativo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Análisis de Secuencia de ADN
20.
Oecologia ; 145(1): 153-64, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15875144

RESUMEN

In California valley grasslands, Avena fatua L. and other exotic annual grasses have largely displaced native perennial bunchgrasses such as Elymus glaucus Buckley and Nassella pulchra (A. Hitchc.) Barkworth. The invasion success and continued dominance of the exotics has been generally attributed to changes in disturbance regimes and the outcome of direct competition between species. Here, we report that exotic grasses can also indirectly increase disease incidence in nearby native grasses. We found that the presence of A. fatua more than doubled incidence of infection by barley and cereal yellow dwarf viruses (B/CYDVs) in E. glaucus. Because B/CYDV infection can stunt E. glaucus and other native bunchgrasses, the indirect effects of A. fatua on virus incidence in natives suggests that apparent competition may be an additional mechanism influencing interactions among exotic and native grasses in California. A. fatua's influence on virus incidence is likely mediated by its effects on populations of aphids that vector B/CYDVs. In our study, aphids consistently preferred exotic annuals as hosts and experienced higher fecundity on them, suggesting that the exotics can attract and amplify vector populations. To the best of our knowledge, these findings are the first demonstration that exotic plants can indirectly influence virus incidence in natives. We suggest that invasion success may be influenced by the capacity of exotic plant species to increase the pathogen loads of native species with which they compete.


Asunto(s)
Áfidos/fisiología , Luteovirus/patogenicidad , Enfermedades de las Plantas/virología , Poaceae , Animales , California , Fertilidad , Interacciones Huésped-Parásitos , Luteovirus/genética , Luteovirus/aislamiento & purificación , Poaceae/parasitología , Poaceae/fisiología , Poaceae/virología , Densidad de Población , ARN Viral/análisis , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...