Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomedicine ; 58: 102745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499167

RESUMEN

Understanding the stability of mRNA loaded lipid nanoparticles (mRNA-LNPs) is imperative for their clinical development. Herein, we propose the use of size-exclusion chromatography coupled with dual-angle light scattering (SEC-MALS) as a new approach to assessing mRNA-LNP stability in pure human serum and plasma. By applying a dual-column configuration to attenuate interference from plasma components, SEC-MALS was able to elucidate the degradation kinetics and physical property changes of mRNA-LNPs, which have not been observed accurately by conventional dynamic light scattering techniques. Interestingly, both serum and plasma had significantly different impacts on the molecular weight and radius of gyration of mRNA-LNPs, suggesting the involvement of clotting factors in desorption of lipids from mRNA-LNPs. We also discovered that a trace impurity (~1 %) in ALC-0315, identified as its O-tert-butyloxycarbonyl-protected form, greatly diminished mRNA-LNP stability in serum. These results demonstrated the potential utility of SEC-MALS for optimization and quality control of LNP formulations.


Asunto(s)
Cromatografía en Gel , Lípidos , Nanopartículas , ARN Mensajero , Humanos , ARN Mensajero/genética , ARN Mensajero/sangre , Nanopartículas/química , Lípidos/química , Dispersión Dinámica de Luz , Plasma/química , Luz , Dispersión de Radiación , Suero/química , Estabilidad del ARN , Liposomas
2.
Adv Healthc Mater ; 13(6): e2302786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37837308

RESUMEN

Animal-derived basement-membrane matrices such as Geltrex are used to grow cells and tissues. Particularly, these are commonly applied to support tumor growth in animals for cancer research. However, a material derived from an animal source has an undefined composition, and may thus have unavoidable batch-to-batch variation in properties. To overcome these issues, a series of synthetic short peptides to form hydrogels is designed in combination with gelatin to promote cell adhesion and growth. The peptides have sequences of (X1Y1X2Y2)2 , where X1 and X2 are hydrophobic residues, while Y1 and Y2 are hydrophilic residues. The peptides spontaneously fold and self-assemble into a ß-sheet secondary structure upon contact with salts, and then aggregate to form hydrophilic networks of hydrogels. Hybrid hydrogels formed by mixing the peptide IEVEIRVK (IVK8) with gelatin are injectable and enzymatically degradable. The hybrid hydrogels at optimal compositions support SW480 and HepG2 tumor spheroid growth in vitro as effectively as Geltrex. More importantly, the peptide/gelatin hydrogels support tumor growth in a SW480 human colorectal adenocarcinoma xenograft mouse model. Altogether, the results illustrate that the synthetic peptide/gelatin hybrid hydrogel is a promising scaffold that can be used to support cell and tissue growth both in vitro and in vivo.


Asunto(s)
Neoplasias Colorrectales , Gelatina , Humanos , Animales , Ratones , Membrana Basal , Modelos Animales de Enfermedad , Hidrogeles/farmacología , Péptidos/farmacología
3.
Biomacromolecules ; 23(7): 2803-2813, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35675906

RESUMEN

Tissue engineering involves the transplantation of stem cell-laden hydrogels as synthetic constructs to replace damaged tissues. However, their time-consuming fabrication procedures are hurdles to widespread application in clinics. Fortunately, similar to cell banking, synthetic tissues could be cryopreserved for subsequent central distribution. Here, we report the use of trehalose and gellan gum as biomacromolecules to form a cryopreservable yet directly implantable hydrogel system for adipose-derived stem cell (ADSC) delivery. Through a modified cell encapsulation method and a preincubation step, adequate cryoprotection was afforded at 0.75 M trehalose to the encapsulated ADSCs. At this concentration, trehalose demonstrated lower propensity to induce apoptosis than 10% DMSO, the current gold standard cryoprotectant. Moreover, when cultured along with trehalose after thawing, the encapsulated ADSCs retained their stem cell-like phenotype and osteogenic differentiation capacity. Taken together, this study demonstrates the feasibility of an "off-the-shelf" biomacromolecule-based synthetic tissue to be applied in widespread tissue engineering applications.


Asunto(s)
Hidrogeles , Osteogénesis , Colágeno , Criopreservación , Hidrogeles/farmacología , Polisacáridos Bacterianos , Células Madre , Azúcares , Trehalosa/farmacología
4.
ACS Appl Bio Mater ; 4(2): 1470-1482, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35014496

RESUMEN

Gellan gum is a biologically inert natural polymer that is increasingly favored as a material-of-choice to form biorelevant hydrogels. However, as a burn wound dressing, native gellan gum hydrogels do not drive host's biology toward regeneration and are mechanically inadequate wound barriers. To overcome these issues, we fabricateda gellan gum-collagen full interpenetrating network (full-IPN) hydrogel that can house adipose-derived mesenchymal stem cells (ADSCs) and employ their multilineage differentiation potential and produce wound-healing paracrine factors to reduce inflammation and promote burn wound regeneration. Herein, a robust temperature-dependent simultaneous IPN (SIN) hydrogel fabrication process was demonstrated using applied rheology for the first time. Subsequently after fabrication, mechanical characterization assays showed that the IPN hydrogels were easy to handle without deforming and retained sufficient mass to effect ADSCs' anti-inflammation property in a simulated wound environment. The IPN hydrogels' increased stiffness proved conducive for mechanotransduced cell adhesion. Scanning electron microscopy revealed theIPN's porous network, which enabled encapsulated ADSCs to spread and proliferate, for up to 3 weeks of culture, further shown by cells' dynamic filopodia extension observed in 3D confocal images. Successful incorporation of ADSCs accorded the IPN hydrogels with biologic wound-dressing properties, which possess the ability to promote human dermal fibroblast migration and secrete an anti-inflammatory paracrine factor, TSG-6 protein, as demonstrated in the 2D scratch wound assay and ELISA, respectively. More importantly, upon application onto murine full thickness burn wounds, our biologic wound dressing enhanced early wound closure, reduced inflammation, and promoted complete skin regeneration. Altogether, our results highlight the successful mechanical and biological enhancement of the inert matrix of gellan gum. Through completely natural procedures, a highly applicable biologic wound dressing is introduced for cell-based full thickness burn wound therapy.


Asunto(s)
Antiinflamatorios/uso terapéutico , Vendajes , Quemaduras/terapia , Colágeno , Hidrogeles , Polisacáridos Bacterianos , Animales , Células de la Médula Ósea , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas , Ratones , Regeneración/efectos de los fármacos , Regeneración/fisiología , Piel/efectos de los fármacos , Piel/patología
5.
Front Bioeng Biotechnol ; 8: 564667, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042965

RESUMEN

The global cell culture market is experiencing significant growth due to the rapid advancement in antibody-based and cell-based therapies. Both rely on the capacity of different living factories, namely prokaryotic and eukaryotic cells, plants or animals for reliable and mass production. The ability to improve production yield is of important concern. Among many strategies pursued, optimizing the complex nutritional requirements for cell growth and protein production has been frequently performed via culture media component titration and serum replacement. The addition of specific ingredients into culture media to modulate host cells' metabolism has also recently been explored. In this study, we examined the use of extracted bioactive components of the microalgae Chlorella vulgaris, termed chlorella growth factor (CGF), as a cell culture additive for serum replacement and protein expression induction. We first established a chemical fingerprint of CGF using ultraviolet-visible spectroscopy and liquid chromatography-mass spectrometry and evaluated its ability to enhance cell proliferation in mammalian host cells. CGF successfully promoted the growth of Chinese hamster ovary (CHO) and mesenchymal stem cells (MSC), in both 2D and 3D cell cultures under reduced serum conditions for up to 21 days. In addition, CGF preserved cell functions as evident by an increase in protein expression in CHO cells and the maintenance of stem cell phenotype in MSC. Taken together, our results suggest that CGF is a viable culture media additive and growth matrix component, with wide ranging applications in biotechnology and tissue engineering.

6.
Carbohydr Polym ; 241: 116345, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32507219

RESUMEN

Hydrogels as artificial biomaterial scaffolds offer a much favoured 3D microenvironment for tissue engineering and regenerative medicine (TERM). Towards biomimicry of the native ECM, polysaccharides from Nature have been proposed as ideal surrogates given their biocompatibility. In particular, derivatives from microbial sources have emerged as economical and sustainable biomaterials due to their fast and high yielding production procedures. Despite these merits, microbial polysaccharides do not interact biologically with human tissues, a critical limitation hampering their translation into paradigmatic scaffolds for in vitro 3D cell culture. To overcome this, chemical and biological functionalization of polysaccharide scaffolds have been explored extensively. This review outlines the most recent strategies in the preparation of biofunctionalized gellan gum, xanthan gum and dextran hydrogels fabricated exclusively via material blending. Using inorganic or organic materials, we discuss the impact of these approaches on cell adhesion, proliferation and viability of anchorage-dependent cells for various TERM applications.'


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Polisacáridos Bacterianos , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Adhesión Celular , Línea Celular , Supervivencia Celular , Humanos
7.
Biofabrication ; 9(1): 015010, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071597

RESUMEN

The hand function of patients who suffer from trigger finger can be impaired by the use of traditional splints. There is also a risk of systemic side effects with oral non-steroidal anti-inflammatory drugs (NSAIDs) used for pain relief. Microneedle-assisted transdermal drug delivery offers an attractive alternative for local delivery of NSAIDs. However, traditional microneedle arrays fabricated on flat surfaces are unable to deliver drugs effectively across the undulating skin surface of affected finger(s). In this study, using 3D printing, a dual-function microneedle array has been fabricated on personalized curved surfaces (microneedle splint) for drug delivery and splinting of the affected finger. The novel microneedle splint was assessed for its physical characteristics and the microneedles were shown to withstand up to twice the average thumb force without fracturing. An average skin penetration efficiency of 64% on dermatomed human cadaver skin was achieved and the final microneedle splint showed biocompatibility with human dermal cell lines. A significantly higher amount of diclofenac permeated through the skin by 0.5 h with the use of the microneedle splint as compared to intact skin. The fabricated microneedle splint can thus be a potential new approach to treat trigger finger via personalized splinting without affecting normal hand function.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Bioimpresión/métodos , Portadores de Fármacos/química , Agujas , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diseño Asistido por Computadora , Diclofenaco/química , Diclofenaco/metabolismo , Diclofenaco/uso terapéutico , Humanos , Impresión Tridimensional , Piel/metabolismo , Piel/patología , Trastorno del Dedo en Gatillo/tratamiento farmacológico , Trastorno del Dedo en Gatillo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...