Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 87(7): 747-757, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37024261

RESUMEN

Soy isoflavones have been shown to have anti-inflammatory properties; however, the anti-inflammatory effects of isoflavone metabolites produced during soybean germination remain unclear. We found that the daidzein and genistein derivatives, 8-prenyl daidzein (8-PD) and 8-prenyl genistein (8-PG), demonstrated a more potent effect than daidzein and genistein on repressing inflammatory responses in macrophages. Although IkB protein levels were unaltered, 8-PD and 8-PG repressed nuclear factor kappa B (NF-κB) activation, which was associated with reduced ERK1/2, JNK, and p38 MAPK activation and suppressed mitogen- and stress-activated kinase 1 phosphorylation. Inflammatory responses induced by the medium containing hypertrophic adipocyte secretions were successfully suppressed by 8-PD and 8-PG treatment. In the ex vivo study, 8-PD and 8-PG significantly inhibited proinflammatory C-C motif chemokine ligand 2 (CCL2) secretion from the adipose tissues of mice fed a long-term high-fat diet. The data suggest that 8-PD and 8-PG could regulate macrophage activation under obesity conditions.


Asunto(s)
Genisteína , Isoflavonas , Ratones , Animales , Genisteína/farmacología , Genisteína/metabolismo , Glycine max/metabolismo , Isoflavonas/farmacología , Isoflavonas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/farmacología
2.
Biochem J ; 479(21): 2279-2296, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36256829

RESUMEN

Certain metabolic intermediates produced during metabolism are known to regulate a wide range of cellular processes. Methylglyoxal (MG), a natural metabolite derived from glycolysis, has been shown to negatively influence systemic metabolism by inducing glucose intolerance, insulin resistance, and diabetic complications. MG plays a functional role as a signaling molecule that initiates signal transduction. However, the specific relationship between MG-induced activation of signal transduction and its negative effects on metabolism remains unclear. Here, we found that MG activated mammalian target of rapamycin complex 1 (mTORC1) signaling via p38 mitogen-activated protein kinase in adipocytes, and that the transforming growth factor-ß-activated kinase 1 (TAK1) is needed to activate p38-mTORC1 signaling following treatment with MG. We also found that MG increased the phosphorylation levels of serine residues in insulin receptor substrate (IRS)-1, which is involved in its negative regulation, thereby attenuating insulin-stimulated tyrosine phosphorylation in IRS-1. The negative effect of MG on insulin-stimulated IRS-1 tyrosine phosphorylation was exerted due to the MG-induced activation of the TAK1-p38-mTORC1 signaling axis. The involvement of the TAK1-p38-mTORC1 signaling axis in the induction of IRS-1 multiple serine phosphorylation was not unique to MG, as the proinflammatory cytokine, tumor necrosis factor-α, also activated the same signaling axis. Therefore, our findings suggest that MG-induced activation of the TAK1-p38-mTORC1 signaling axis caused multiple serine phosphorylation on IRS-1, potentially contributing to insulin resistance.


Asunto(s)
Resistencia a la Insulina , Piruvaldehído , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Resistencia a la Insulina/fisiología , Serina/metabolismo , Transducción de Señal/fisiología , Adipocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Tirosina/metabolismo , Fosfoproteínas/metabolismo
3.
J Cell Sci ; 135(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35912799

RESUMEN

Target of rapamycin (TOR) forms two distinct complexes, TORC1 and TORC2, to exert its essential functions in cellular growth and homeostasis. TORC1 signaling is regulated in response to nutrients such as amino acids and glucose; however, the mechanisms underlying the activation of TORC2 signaling are still poorly understood compared to those for TORC1 signaling. In the budding yeast Saccharomyces cerevisiae, TORC2 targets the protein kinases Ypk1 and Ypk2 (hereafter Ypk1/2), and Pkc1 for phosphorylation. Plasma membrane stress is known to activate TORC2-Ypk1/2 signaling. We have previously reported that methylglyoxal (MG), a metabolite derived from glycolysis, activates TORC2-Pkc1 signaling. In this study, we found that MG activates the TORC2-Ypk1/2 and TORC2-Pkc1 signaling, and that phosphatidylserine is involved in the activation of both signaling pathways. We also demonstrated that the Rho family GTPase Cdc42 contributes to the plasma membrane stress-induced activation of TORC2-Ypk1/2 signaling. Furthermore, we revealed that phosphatidylinositol-specific phospholipase C, Plc1, contributes to the activation of both TORC2-Ypk1/2 and TORC2-Pkc1 signaling.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
4.
Biochem Biophys Rep ; 28: 101127, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34527816

RESUMEN

Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.

5.
Diabetes Metab Syndr Obes ; 13: 4353-4359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33235475

RESUMEN

PURPOSE: Sodium-glucose co-transporter-2 (SGLT2) inhibitors have various pleiotropic effects, including body weight reduction, and therefore have the potential to be used in various applications. However, such effects have not been fully investigated; thus, non-clinical studies using animal models are needed. In animal experiments, SGLT2 inhibitors are usually administered by oral or dietary methods. However, the detailed characteristics of these dosing methods, especially to induce their pleiotropic effects, have not been reported. Therefore, we compared the preventive effects of canagliflozin, an SGLT2 inhibitor, on body weight gain following oral gavage and dietary administration methods in a mouse model of diet-induced obesity. METHODS: Canagliflozin was dosed by oral gavage or dietary administration for 9 weeks to 6-week-old C57BL/6N mice fed a high-fat diet, and parameters related to obesity were evaluated. RESULTS: The suppression of body weight gain, fat mass, and hepatic lipid content was observed following both dosing methods, whereas the effect on body weight tended to be stronger in the dietary administration group. In adipose tissue, fatty acid synthase expression was significantly decreased in the dietary administration group, and its expression was significantly correlated with fat mass. However, the expression of genes related to fatty acid oxidation was unchanged, indicating that the preventive effect on body weight gain was mediated mainly through the suppression of lipid synthesis rather than the promotion of lipid oxidation. CONCLUSION: Canagliflozin prevented body weight gain through the suppression of lipid synthesis via both dosing methods, although there were some differences in the efficacy. The findings of our study can help to identify new mechanisms of action of SGLT2 inhibitors and potential applications.

6.
Biosci Biotechnol Biochem ; 83(9): 1782-1789, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31045477

RESUMEN

Activation of the adipose lipolytic pathway during lipid metabolism is mediated by protein kinase A (PKA), which responds to ß-adrenergic stimulation, leading to increased lipolysis. Soy is well known as a functional food and it is able to affect lipolysis in adipocytes. However, the mechanism by which soy components contribute to the lipolytic pathway remains to be fully elucidated. Here, we show that hydrolyzed soy enhances isoproterenol-stimulated lipolysis and activation of PKA in 3T3-L1 adipocytes. We also found that the expression of ß-adrenergic receptors, which coordinate the activation of PKA, is elevated in adipocytes differentiated in the presence of soy hydrolysate. The activity of the soy hydrolysate towards ß-adrenergic receptor expression was detected in its hydrophilic fraction. Our results suggest that the soy hydrolysate enhances the PKA pathway through the upregulation of ß-adrenergic receptor expression and thereby, increase lipolysis in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Agonistas Adrenérgicos beta/farmacología , Glycine max/metabolismo , Isoproterenol/farmacología , Lipólisis/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Células 3T3-L1 , Animales , Cromatografía Líquida de Alta Presión/métodos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hidrólisis , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...