Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 71(1): 77-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37405889

RESUMEN

OBJECTIVE: Conventional colonoscopy using a flexible colonoscope remains two major limitations, including patient discomfort and difficult manipulations for surgeons. Robotic colonoscopes have been developed to conduct colonoscopy in a patient-friendly manner. However, most robotic colonoscopes still maintain nonintuitive and difficult manipulations, which limits their clinical applications. In this paper, we demonstrated visual servo-based semi-autonomous manipulations of an electromagnetic actuated soft-tethered (EAST) colonoscope, which aims to lower difficulties of robotic colonoscope manipulations. METHODS: Kinematic modeling of EAST colonoscope is conducted, with an adaptive visual servo controller established. Template matching method and a lumen and polyp detection model are developed to enable semi-autonomous manipulations, including region-of-interest automatic tracking and autonomous navigation with automatic polyp detection. RESULTS: The EAST colonoscope demonstrates visual servoing with an average convergence time of around 2.5 s and performs disturbance rejection within 3.0 s. Semi-autonomous manipulations were conducted in both a commercialized colonoscopy simulator and an ex-vivo porcine colon to show the efficacy of reducing the user workload compared to manual control. CONCLUSION: The EAST colonoscope can perform visual servoing and semi-autonomous manipulations with the developed methods in both laboratory and ex-vivo environments. SIGNIFICANCE: The proposed solutions and techniques improve the autonomy level of robotic colonoscopes and reduce user workloads, which promotes the development and clinical translation of robotic colonoscopy.


Asunto(s)
Colonoscopios , Robótica , Porcinos , Animales , Humanos , Diseño de Equipo , Colonoscopía/métodos , Colon/diagnóstico por imagen
2.
Soft Robot ; 9(2): 386-398, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34143662

RESUMEN

Accessing tubular environment is critical in medicine. For example, gastrointestinal tract related cancers are the leading causes of cancer deaths globally. To diagnose and treat these cancers, clinicians need accessing the gastrointestinal tract, for example, colon and small intestine, which are soft biological tubes. Soft balloon assisted locomotion is one of the promising methods for accessing bio-duct. It has been widely used in enteroscopy and other medical devices. However, the interaction between the balloon and the soft tube is seldom studied, such as the interaction pressure and the anchoring force. In this work, we present the first modeling of the interaction between soft balloon actuators and soft tubular environment. The free inflation model of soft balloon actuators was first presented. Then a constrained inflation model of the soft balloon in a soft tube was established. Finally, the anchoring force model between the soft balloon and the soft tube was developed. On average, the mean error of the predictions in these three models is 0.228 kPa (or 3.14%), 0.56 kPa (or 7.8%), and 0.22 N (or 14.7%), respectively. In the future, these models could be used for guiding balloon-actuator designs by minimizing the interaction pressure while maintaining sufficient anchoring force during the locomotion in soft tubes.


Asunto(s)
Laparoscopía , Robótica , Endoscopía Gastrointestinal , Diseño de Equipo , Tracto Gastrointestinal
3.
Plant Physiol ; 184(2): 777-791, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759269

RESUMEN

Selective autophagy is a subcellular process whereby cytoplasmic materials are selectively sequestered into autophagosomes for subsequent delivery to the vacuole for degradation and recycling. Arabidopsis (Arabidopsis thaliana) NBR1 (next to BRCA1 gene 1 protein; AtNBR1) has been proposed to function as a selective autophagy receptor in plants, whereby AtNBR1 anchors the ubiquitinated targets to autophagosomes for degradation. However, the specific cargos of AtNBR1 remain elusive. We previously showed that Arabidopsis exocyst subunit EXO70 family protein E2 (AtExo70E2), a marker for exocyst-positive organelle (EXPO), colocalized with the autophagosome marker Arabidopsis autophagy-related protein8 (AtATG8) and was delivered to the vacuole for degradation upon autophagic induction. Here, through multiple analyses, we demonstrate that AtNBR1 is a selective receptor for AtExo70E2 during autophagy in Arabidopsis. First, two novel loss-of-function nbr1 CRISPR mutants (nbr1-c1 and nbr1-c2) showed an early-senescence phenotype under short-day growth conditions. Second, during autophagic induction, the vacuolar delivery of AtExo70E2 or EXPO was significantly reduced in nbr1 mutants compared to wild-type plants. Third, biochemical and recruitment assays demonstrated that AtNBR1 specifically interacted and recruited AtExo70E2 or its EXPO to AtATG8-positive autophagosomes in a ubiquitin-associated (UBA)-independent manner during autophagy. Taken together, our data indicate that AtNBR1 functions as a selective receptor in mediating vacuolar delivery of AtExo70E2 or EXPO in a UBA-independent manner in plant autophagy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA