Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139913, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611766

RESUMEN

The membrane bioreactor (MBR) with nitritation based nitrogen removal processes has attracted growing interest in recent years, although membrane fouling in the nitritation MBR is a challenging issue. In this study, the inhibitory effect of free nitrous acid (FNA) on microbial extracellular polymeric substances (EPS) production and membrane fouling in a nitritation MBR was investigated. Results showed that EPS played a critical role in the biofouling process, and EPS production was affected by FNA concentration. As FNA concentration increased from 5.10 × 10-3 mg N/L to 1.34 × 10-2 mg N/L, protein (PN) and polysaccharide (PS) contents increased from 8.20 to 60.28 mg/g VSS and 4.74-30.46 mg/g VSS, respectively. However, when FNA concentration was 1.48 × 10-2 mg N/L, PN and PS reduced by 20.0% and 10.9%, respectively, indicating that the higher FNA concentration could reduce EPS production. The EPS reduction could be attributed to reduction in the loosely bound (LB) and tightly bound (TB) EPS but not the soluble microbial products (SMP). It was further revealed that higher FNA concentrations up to 1.48 × 10-2 mg N/L consequently mitigate trans-membrane pressure (TMP) rate in terms of dTMP/dt by 25.5% in the nitritation MBR. High throughput sequencing analysis revealed that the increase in FNA led to enrichment of Nitrosomonas but reduction in heterotrophic bacteria. This study showed that the appropriate FNA concentration affected EPS production and hence membrane fouling, leading to the possibility of membrane fouling mitigation by in-situ generated FNA in the nitritation MBR.


Asunto(s)
Incrustaciones Biológicas , Matriz Extracelular de Sustancias Poliméricas , Ácido Nitroso , Membranas , Incrustaciones Biológicas/prevención & control , Reactores Biológicos
2.
J Hazard Mater ; 403: 123650, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32810713

RESUMEN

This study proposes a new path to utilize thermal hydrolyzed sludge (TH sludge) as fertilizer given high value chemical compounds that can promote plant growth were identified in the liquid fraction of TH sludge (TH liquor). Together with micro- and macro-nutrients released/synthesized during thermal hydrolysis, the feasibility of using TH liquor as organic fertilizer was evaluated. Besides high contents of N, P and K, total free amino acids (FAAs) and plant-growth-promoting FAAs (including glutamic acid, leucine and cystine) also presented in high concentration (4.98-6.48 and 1.12-2.73 g/100 g) in the TH liquor. For the first time, phytohormone compound, indole-3-acetic acid, was observed and the content was the highest in TH liquor with 165 °C treatment (165 °C TH liquor). Meantime, 165 °C TH liquor did not have negative impact on the growth of soil microbes, and this product, instead, demonstrated stimulating effect on the plant growth. These results suggest that 165 °C TH liquor has a great potential to be an organic fertilizer. The remaining solids of TH sludge could be converted to valuable biochar. The holistic approach of using TH liquor as organic fertilizer and producing biochar could realize nearly zero-waste discharge in sludge management.


Asunto(s)
Fertilizantes , Aguas del Alcantarillado , Hidrólisis , Eliminación de Residuos Líquidos
3.
Biochim Biophys Acta Biomembr ; 1862(11): 183432, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32781154

RESUMEN

Antimicrobial peptides (AMPs) are potentially vital as the next generation of antibiotics against multidrug resistant bacterial pathogens. Thanatin, an insect derived pathogen inducible 21-residue long antimicrobial peptide, demonstrates antimicrobial activity toward broad range of pathogens. Thanatin is an excellent candidate for antibiotics development due to potent in vivo activity in animal model and low toxicity to human cells. Recent studies indicated mode of action of thanatin could be intriguing and may comprise bacterial membrane permeabilization and interactions with periplasmic proteins. In order to better understand selectivity and membrane disruption, here, we determined 3-D structure of the thanatin in zwitterionic DPC-d38 micelle by NMR spectroscopy. The depth of insertion of thanatin into micelle structure was investigated by spin labelled doxyl lipids, 5-DSA and 16-DSA. DPC-bound structure of thanatin is defined by a ß-hairpin structure and an extended and turn conformations, for residues G1-I8, at the N-terminus. The ß-hairpin structure is delineated by two antiparallel ß-strands, residues I9-C11 and residues K17-R20, which is connected by loop consisted of residues N12-G16. There are cross ß-strands sidechain-sidechain packing interactions among hydrophobic and aromatic residues. Spin labelled lipid studies revealed a set of spatially proximal residues V6, I8, Q19, R20 and M21 may be deeply inserted into the hydrophobic core of the DPC micelle. While, residues including those at the turn/loop are merely surface localized. The atomic resolution structure and orientation of thanatin in zwitterionic DPC micelle may be utilized for understating mode of action in lipid membrane and further development of non-toxic analogs.


Asunto(s)
Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Membranas Artificiales , Micelas , Fosforilcolina/análogos & derivados , Espectroscopía de Resonancia Magnética , Fosforilcolina/química , Estructura Secundaria de Proteína , Marcadores de Spin
4.
Chemosphere ; 244: 125452, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31821925

RESUMEN

Absence of sludge deflocculation under prolonged (24 h or longer) conditions with dissolved oxygen (DO) less than 0.5 mg L⁻1 was recently reported. The reduced aerobic microbial activity, was speculated, had been compensated by the activity of other bacterial (i.e. facultative) communities. To assess such a compensation mechanism and to better evaluate impact of overall microbial activity on the flocculation process, SBR sludge samples were inhibited by using sodium azide under various DO conditions. Sludge deflocculated only in the presence of sodium azide, regardless of DO conditions. This was linked to sodium azide's inhibitory effects on the microbes as indicated by the reduced ammonium and DOC removals. Extracellular potassium level in the mixed liquor of azide spiked samples also indicated simultaneous cell lysis. Fluorescence excitation emission matrix (FEEM) analysis of the extracted bound EPS and fluorescence quenching based interaction studies indicated sodium azide had interacted with the EPS components, and especially with the bound EPS proteins. The impact of such interactions on reduced floc stability needs consideration. This study confirmed the importance of overall microbial activity in the biological flocculation process and the role of bacterial communities, other than the aerobes, in mitigating deflocculation under low DO conditions.


Asunto(s)
Aguas del Alcantarillado/microbiología , Azida Sódica , Eliminación de Residuos Líquidos , Bacterias/metabolismo , Floculación , Oxígeno/metabolismo
5.
J Fluoresc ; 29(6): 1291-1300, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31707509

RESUMEN

Development of metallic and nonmetallic heteroatom doped carbon dots have gained attention due to their enhanced physicochemical and photoluminescence properties. In this study, a facile one pot hydrothermal carbonisation approach was taken to synthesise nitrogen, aluminum co-doped carbon dots (N/Al-CDs) with a photoluminescence quantum yield of 28.7%. Durian shell, a cellulose biomass waste, was used as the primary carbon source and compared to previously reported cellulose based carbon dots, this study presents one of the highest quantum yields. The structural and fluorescent properties of the synthesised N/Al-CDs were characterized through X-ray photoelectron spectroscopy (XPS), fluorescence spectra, and Fourier transform infrared spectroscopy (FTIR). The maximum emission was at 415 nm upon excitation at 345 nm. The synthesised N/Al-CDs were resistant to photobleaching and highly photostable within the pH, ionic strength and temperature variations investigated. The transmission electron microscopy (TEM) images showed particles were quasi-spherical and well dispersed with an average diameter of 10.0 nm. Further, the N/Al-CDs was developed as a fluorescence sensor for highly selective and sensitive detection of Mn (VII) ions. A linear relationship was developed over a concentration range of 0-100 µM while the limit of detection was 46.8 nM. Application of the sensor for detection of Manganese (VII) to two real water samples showed relative standard deviation was less than 3.9% and 1.3%, respectively.


Asunto(s)
Celulosa/química , Fluorescencia , Colorantes Fluorescentes/química , Manganeso/análisis , Puntos Cuánticos/química , Aluminio/química , Carbono/química , Colorantes Fluorescentes/síntesis química , Nitrógeno/química , Tamaño de la Partícula , Propiedades de Superficie
6.
Environ Sci Pollut Res Int ; 26(17): 16974-16997, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31041714

RESUMEN

Municipal solid waste incineration (MSWI) generates bottom ash, fly ash (FA), and air pollution control (APC) residues as by-products. FA and APC residues are considered hazardous due to the presence of soluble salts and a high concentration of heavy metals, and they should be appropriately treated before disposal. Physicochemical characterization using inductively coupled plasma mass spectroscopy (ICP-MS), X-ray diffraction (XRD), and X-ray fluorescence (XRF) have shown that FA and APC have potential for reuse after treatment as these contain CaO, SiO2, and Al2O3. Studies conducted on treatment of FA and APC are categorized into three groups: (i) separation processes, (ii) solidification/stabilization (S/S) processes, and (iii) thermal processes. Separation processes such as washing, leaching, and electrochemical treatment improve the quality and homogeneity of the ash. S/S processes such as chemical stabilization, accelerate carbonation, and cement solidification modify hazardous species into less toxic constituents. Thermal processes such as sintering, vitrification, and melting are effective at reducing volume and producing a more stable product. In this review paper, the treatment processes are analyzed in relation to ash characteristics. Issues concerning mixing FA and APC residues before treatment, true treatment costs, and challenges are also discussed to provide further insights on the implications and possibilities of utilizing FA and APC as secondary materials.


Asunto(s)
Contaminación del Aire/prevención & control , Ceniza del Carbón/química , Técnicas Electroquímicas/métodos , Incineración/métodos , Eliminación de Residuos/métodos , Metales Pesados/análisis , Residuos Sólidos/análisis
7.
Chemosphere ; 227: 533-540, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31004820

RESUMEN

The introduction of glyphosate, found in herbicides, to waterbodies is of concern due to its toxicity and hence potential threat to public health and ecological systems. The present study has compared glyphosate removal from aqueous solution with activated carbon and biochar. Box-Behnken design, and percent contribution with Pareto analysis techniques were used in surface response and efficiency calculations modelled the process conditions and their effects. The adsorption data better fitted the Freundlich isotherm model than the Langmuir model. The rate of glyphosate adsorption was found to follow a pseudo-second-order model. pH of the solutions was regulated by buffering during the adsorption process. Higher efficacy of glyphosate removal was obtained by optimising parameters such as operating pH, initial glyphosate concentration, temperature, adsorbent dose, and contact time. The conditions yielding the best removals were pH 8.0, 0.2 mg/L, 50.0 °C, 11.4 g/L, 1.7 h for activated carbon and pH 5.0, 0.7 mg/L, 50.0 °C, 12.3 g/L, 1.9 h for biochar, for the aforementioned parameters respectively. The maximum removal capacity and efficiency were 0.0173 mg/g and 98.45% for activated carbon, and 0.0569 mg/g and 100.00% for biochar. The test results indicated biochar could be important from the perspective of performance and affordability.


Asunto(s)
Carbón Orgánico/farmacología , Glicina/análogos & derivados , Adsorción/efectos de los fármacos , Glicina/aislamiento & purificación , Glicina/toxicidad , Herbicidas/aislamiento & purificación , Herbicidas/toxicidad , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Contaminantes Químicos del Agua/aislamiento & purificación , Glifosato
8.
Sci Total Environ ; 660: 11-17, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30639708

RESUMEN

This study investigated the initiation and maintenance of nitritation in a membrane bioreactor (MBR) with long solids retention time (SRT) of 43.8 days. Nitritation was initiated within 65 days in the MBR via dissolved oxygen (DO) limitation (<0.5 mg/L). However, nitrite oxidizing bacteria (NOB) (Nitrospira and Nitrobacter) acclimated to the low DO environment and proliferated from day 81, leading to nitrate accumulation. Thereafter, the combined strategy of DO limitation and in-situ generated free nitrous acid (FNA) shock successfully restored and maintained stable nitritation for >70 days. Quantitative polymerase chain reaction (qPCR) results showed that cell abundances of Nitrospira and Nitrobacter decreased by between 50.0 to 68.9% and 60.6 to 96.4%, respectively following the FNA shocks. The maximum ammonium loading rate achieved was 1.81 kg N/(m3 day) with ammonium removal ratio and nitrite accumulation ratio of over 0.97 and 0.96, respectively. Average emission rate of N2O from the MBR was 2.1 ±â€¯0.72% of ammonium removed. FNA shock on day 195 reduced the N2O emission by 13.6%. The strategy developed in this study verified that spiked FNA shock together with DO limitation can be used for maintaining nitritation in MBRs with long SRTs. This method can potentially allow for maintaining nitritation at relatively low capital and operating expenditure when treating high concentration ammonium wastewater.


Asunto(s)
Bacterias/metabolismo , Óxido Nitroso/análisis , Oxígeno/análisis , Eliminación de Residuos Líquidos , Compuestos de Amonio/análisis , Compuestos de Amonio/metabolismo , Reactores Biológicos , Nitrobacter/metabolismo , Óxido Nitroso/metabolismo , Oxígeno/metabolismo , Factores de Tiempo , Aguas Residuales/análisis
9.
J Fluoresc ; 29(1): 221-229, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30565002

RESUMEN

Photoluminescent carbon dots have gained increasing attention in recent years due to their unique optical properties. Herein, a facile one-pot hydrothermal process is used to develop nitrogen-doped carbon dots (NCDs) with durian shell waste as the precursor and Tris base as the doping agent. The synthesized NCDs showed a quantum yield of 12.93% with a blue fluorescence under UV-light irradiation and maximum emission at 414 nm at an excitation wavelength of 340 nm. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy showed the presence of nitrogen and oxygen functional groups on the NCD surface. The particles were quasi-spherical with an average particle diameter of 6.5 nm. The synthesized NCDs were resistant to photobleaching and stable under a wide range of pH but were negatively affected by increasing temperature. NCDs showed high selectivity to Tetracycline as the fluorescence of NCDs was quenched significantly by Tetracycline as a result of the inner filter effect. Based on sensitivity experiments, a linear relationship (R2 = 0.989) was developed over a concentration range of 0-30 µM with a detection limit of 75 nM (S/N = 3). The linear model was validated with two water samples (lake water and tap water) with relative recoveries of 98.6-108.5% and an RSD of <3.5%.

10.
ACS Omega ; 3(11): 14650-14664, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30555984

RESUMEN

Antimicrobial peptides are promising molecules in uprising consequences of drug-resistant bacteria. The prodomain of furin, a serine protease, expressed in all vertebrates including humans, is known to be important for physiological functions. Here, potent antimicrobial peptides were mapped by extensive analyses of overlapping peptide fragments of the prodomain of human furin. Two peptides, YR26 and YR23, were active against bacterial cells including MRSA-resistant Staphylococcus aureus and Staphylococcus epidermis 51625. Peptides were largely devoid of hemolytic and cytotoxic activity. Bacterial cell killing occurred as a result of the disruption of the permeability barrier of the lipopolysaccharide (LPS)-outer membrane and fragmentation of LPS into small micelles. Furthermore, antibacterial peptides specifically interacted with the negatively charged lipids causing membrane leakage and fusion. The YR26 peptide in sodium dodecyl sulfate micelles demonstrated a long-helix-turn-short-helix structure exhibiting restricted backbone motions. The cell-selective activity of the furin peptides and their unique mode of action on membranes have a significant potential for the development of therapeutics.

11.
Ultrason Sonochem ; 48: 432-440, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30080570

RESUMEN

Ultrasound (ULS), sodium hydroxide (NaOH) and combined ultrasound/NaOH pre-treatment were applied to pre-treat waste activated sludge and improve the subsequent anaerobic digestion. Synergistic effect was observed when NaOH treatment was coupled with ultrasound treatment. The highest synergistic Chemical Oxygen Demand (COD) solubilization was observed when 0.02M NaOH was combined with five minutes ultrasonication: an extra 3000 mg/L was achieved on top of the NaOH (1975 mg/L) and ultrasonication (2900 mg/L) treatment alone. Further increase of NaOH dosage increased Soluble Chemical Oxygen Demand (SCOD), but did not increase the synergistic effect. Nine and 18 minutes ultrasonication led to 20% and 24% increase of methane production, respectively; Whereas, 0.05M NaOH pre-treatment did not improve the sludge biodegradability. Combined ultrasound/NaOH (9 min+0.05 M) showed 31% increase of methane production. A stepwise NaOH addition/ultrasound pre-treatment (0.02M+ULS for 5 min+0.02M+ULS for 4 min) was tested and resulted in 40% increase of methane production using 20% less chemicals.

12.
Chemosphere ; 210: 401-416, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30015131

RESUMEN

In the operation of biological wastewater treatment processes, fast sludge settling during liquid-solids disengagement is preferred as it affects effluent quality, treatment efficiency and plant operation economy. An important property of fast settling biological sludge is the ability to spontaneously form big and dense flocs (flocculation) that readily separates from water. Therefore, there had been much research to study the conditions that promote biological sludge flocculation. However, reported findings have often been inconsistent and this has possibly been due to the complex nature of the biological flocculation process. Thus, it has been challenging for wastewater treatment plant operators to extract practical information from the literature. The aim of this review is to summarize the current state of understanding of the factors that affect sludge flocculation so that evaluation of such information can be facilitated and strategize for intervention in the sludge flocculation and deflocculation process.


Asunto(s)
Floculación , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología
13.
Sci Rep ; 7(1): 17795, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259246

RESUMEN

Host defense cationic Antimicrobial Peptides (AMPs) can kill microorganisms including bacteria, viruses and fungi using various modes of action. The negatively charged bacterial membranes serve as a key target for many AMPs. Bacterial cell death by membrane permeabilization has been well perceived. A number of cationic AMPs kill bacteria by cell agglutination which is a distinctly different mode of action compared to membrane pore formation. However, mechanism of cell agglutinating AMPs is poorly understood. The outer membrane lipopolysaccharide (LPS) or the cell-wall peptidoglycans are targeted by AMPs as a key step in agglutination process. Here, we report the first atomic-resolution structure of thanatin, a cell agglutinating AMP, in complex with LPS micelle by solution NMR. The structure of thanatin in complex with LPS, revealed four stranded antiparallel ß-sheet in a 'head-tail' dimeric topology. By contrast, thanatin in free solution assumed an antiparallel ß-hairpin conformation. Dimeric structure of thanatin displayed higher hydrophobicity and cationicity with sites of LPS interactions. MD simulations and biophysical interactions analyses provided mode of LPS recognition and perturbation of LPS micelle structures. Mechanistic insights of bacterial cell agglutination obtained in this study can be utilized to develop antibiotics of alternative mode of action.


Asunto(s)
Aglutinación/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Lipopolisacáridos/farmacología , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Micelas
14.
Sci Rep ; 7(1): 18006, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269771

RESUMEN

The anaerobic digestion process is a multi - step reaction dependent on concerted activities such as exchange of metabolites among physiologically different microbial communities. This study investigated the impact of iron oxide nanoparticles on the anaerobic sludge microbiota. It was shown there were three distinct microbial phases following addition of the nanoparticles: microbial stress and cell death of approximately one log order of magnitude, followed by microbial rewiring, and recovery. Furthermore, it was noted that cellular stress led to the establishment of intercellular nanotubes within the microbial biomass. Intercellular nanotube - mediated communication among genetically engineered microorganisms and ad hoc assembled co - cultures have been previously reported. This study presents evidence of intercellular nanotube formation within an environmental sample - i.e., anaerobic sludge microbiota subjected to stress. Our observations suggested a mode of microbial communication in the anaerobic digestion process not previously explored and which may have implications on bioreactor design and microbial functions.


Asunto(s)
Anaerobiosis/efectos de los fármacos , Celulosa/metabolismo , Nanopartículas del Metal/administración & dosificación , Consorcios Microbianos/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Anaerobiosis/fisiología , Reactores Biológicos , Consorcios Microbianos/fisiología , Estrés Fisiológico/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-28841359

RESUMEN

Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO4). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH4+ N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.


Asunto(s)
Nanopartículas del Metal/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Óxido de Zinc/análisis , Zinc/análisis , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Iones , Nanopartículas del Metal/toxicidad , Viabilidad Microbiana/efectos de los fármacos , Tamaño de la Partícula , Aguas del Alcantarillado/microbiología , Propiedades de Superficie , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/toxicidad
16.
Chemosphere ; 184: 1286-1297, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28672727

RESUMEN

The formation, composition and characteristics of soluble microbial products (SMPs) were investigated in a novel system which coupled a sequencing batch reactor with a cake filtration system. Both suspended solids (SS) and turbidity were significantly removed, resulting in effluent SS of 0.12 mg L-1 and turbidity of 0.72 NTU after cake filtration. The average concentrations of proteins and carbohydrates decreased respectively from 4.0 ± 0.4 and 7.1 ± 0.6 mg/L in the sequencing batch reactor (SBR) mixed liquor, to 0.85 ± 0.21 and 1.39 ± 0.29 mg/L in the cake filtration effluent. Analysis of the molecular weight (MW) distribution of SMPs revealed a substantial reduction in the intensity of high-MW peaks (503 and 22.71 kDa) after cake filtration, which implied the sludge cake layer and the underlying gel layer may play a role in the effectiveness of cake filtration beyond the physical phenomenon. Three-dimensional excitation emission matrix fluorescence spectroscopy indicated that polycarboxylate- and polyaromatic humic acids were the dominant compounds and a noticeable decrease in the fraction of these compounds was observed in the cake filtration effluent. Analysis with GC-MS set for detecting low-MW SMPs identified aromatics, alcohols, alkanes and esters as the dominant compounds. SMPs exhibited both biodegradable and recalcitrant characteristics. More SMPs (total number of 91) were accumulated during the SBR start-up stage. A noticeable increase in the aromatic fractions was seen in the SBR effluent accoutring for 39% of total compounds, compared to the SBR mixed liquor (28%). Fewer compounds (total number of 66) were identified in cake filtration effluent compared to the SBR effluent (total number of 75).


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Contaminantes del Agua/análisis , Reactores Biológicos , Filtración/métodos , Sustancias Húmicas , Aguas del Alcantarillado , Microbiología del Agua
17.
Environ Sci Pollut Res Int ; 24(14): 13012-13024, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28378314

RESUMEN

Recycled paper mill effluent (RPME) contains high levels of organic and solid compounds, causing operational problems for anaerobic biological treatment. In this study, a unique modified anaerobic inclining-baffled reactor (MAI-BR) has been developed to treat RPME at various initial chemical oxygen demand (COD) concentrations (1000-4000 mg/L) and hydraulic retention times (HRTs) (3 and 1 day). The COD removal efficiency was decreased from 96 to 83% when the organic loading rate (OLR) was increased from 0.33 to 4 g/L day. Throughout the study, a maximum methane yield of 0.25 L CH4/g COD was obtained, while the pH fluctuated in the range of 5.8 to 7.8. The reactor performance was influenced by the development and distribution of the microbial communities. Based on the next-generation sequencing (NGS) analysis, the microbial community represented a variety of bacterial phyla with significant homology to Euryarchaeota (43.06%), Planctomycetes (24.68%), Proteobacteria (21.58%), Acidobacteria (4.12%), Chloroflexi (3.14%), Firmicutes (1.12%), Bacteroidetes (1.02%), and others (1.28%). The NGS analysis showed that the microbial community was dominated by Methanosaeta concilii and Candidatus Kuenenia stuttgartiensis. This can be supported by the presence of filamentous and spherical microbes of different sizes. Additionally, methanogenic and anaerobic ammonium oxidation (ANAMMOX) microorganisms coexisted in all compartments, and these contributed to the overall degradation of substances in the RPME. Graphical abstract ᅟ.


Asunto(s)
Reactores Biológicos/microbiología , Reciclaje , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Metano/química , Papel , Eliminación de Residuos Líquidos
18.
Artículo en Inglés | MEDLINE | ID: mdl-28276890

RESUMEN

Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO4). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH4-N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu2+ indicated the loss of cell viability in sludge flocs.


Asunto(s)
Cobre/análisis , Nanopartículas/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Análisis de la Demanda Biológica de Oxígeno , Cobre/química , Iones , Nanopartículas del Metal/análisis , Nanopartículas del Metal/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química
19.
Water Sci Technol ; 75(1-2): 228-238, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28067663

RESUMEN

A biosorption column and a settling tank were operated for 6 months with combined municipal and industrial wastewaters (1 m3/hr) to study the effect of dissolved oxygen (DO) levels and Fe3+ dosage on removal efficiency of dissolved and suspended organics prior to biological treatment. High DO (>0.4 mg/L) were found to be detrimental for soluble chemical oxygen demand (COD) removals and iron dosing (up to 20 ppm) did not improve the overall performance. The system performed significantly better at high loading rate (>20 kg COD.m-3.d-1) where suspended solids and COD removals were greater than 80% and 60%, respectively. This is a significant improvement compared to the conventional primary sedimentation tank, and the process is a promising alternative for the pre-treatment of industrial wastewater.


Asunto(s)
Ciudades , Residuos Industriales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Oxígeno
20.
Adv Mater ; 29(11)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28067957

RESUMEN

The first triboelectric-nanogenerator (TENG)-based self-powered implantable drug-delivery system is presented. Pumping flow rates from 5.3 to 40 µL min-1 under different rotating speeds of the TENG are realized. The implantable drug-delivery system can be powered with a TENG device rotated by human hand motion. Ex vivo trans-sclera drug delivery in porcine eyes is demonstrated by utilizing the biokinetic energies of human hands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA