Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 6(1): 340-347, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33458485

RESUMEN

Customarily, the studies of dynamics of hydrated proteins are focused on the fast hydration water ν-relaxation, the slow structural α-relaxation responsible for a single glass transition, and the protein dynamic transition (PDT). Guided by the analogy with the dynamics of highly asymmetric mixtures of molecular glass-formers, we explore the possibility that the dynamics of hydrated proteins are richer than presently known. By providing neutron scattering, dielectric relaxation, calorimetry, and deuteron NMR data in two hydrated globular proteins, myoglobin and BSA, and the fibrous elastin, we show the presence of two structural α-relaxations, α1 and α2, and the hydration water ν-relaxation, all coupled together with interconnecting properties. There are two glass transition temperatures T g α1and T g α2 corresponding to vitrification of the α1 and α2 processes. Relaxation time τα2(T) of the α2-relaxation changes its Arrhenius temperature dependence to super-Arrhenius on crossing T g α1 from below. The ν-relaxation responds to the two vitrifications by changing the T-dependence of its relaxation time τν(T) on crossing consecutively T g α2 and T g α1. It generates the PDT at T d where τν(T d) matches about five times the experimental instrument timescale τexp, provided that T d > T g α1. This condition is satisfied by the hydrated globular proteins considered in this paper, and the ν-relaxation is in the liquid state with τν(T) having the super-Arrhenius temperature dependence. However, if T d < T g α1, the ν-relaxation fails to generate the PDT because it is in the glassy state and τν(T) has Arrhenius T-dependence, as in the case of hydrated elastin. Overall, the dynamics of hydrated proteins are the same as the dynamics of highly asymmetric mixtures of glass-formers. The results from this study have expanded the knowledge of the dynamic processes and their properties in hydrated proteins, and impact on research in this area is expected.

2.
J Chem Phys ; 143(10): 104505, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26374048

RESUMEN

The dielectric relaxation in three glass-forming molecular liquids, 1-methylindole (1MID), 5H-5-Methyl-6,7-dihydrocyclopentapyrazine (MDCP), and Quinaldine (QN) is studied focusing on the secondary relaxation and its relation to the structural α-relaxation. All three glass-formers are rigid and more or less planar molecules with related chemical structures but have dipoles of different strengths at different locations. A strong and fast secondary relaxation is detected in the dielectric spectra of 1MID, while no resolved ß-relaxation is observed in MDCP and QN. If the observed secondary relaxation in 1MID is identified with the Johari-Goldstein (JG) ß-relaxation, then apparently the relation between the α- and ß-relaxation frequencies of 1MID is not in accord with the Coupling Model (CM). The possibility of the violation of the prediction in 1MID as due to either the formation of hydrogen-bond induced clusters or the involvement of intramolecular degree of freedom is ruled out. The violation is explained by the secondary relaxation originating from the in-plane rotation of the dipole located on the plane of the rigid molecule, contributing to dielectric loss at higher frequencies and more intense than the JG ß-relaxation generated by the out-of-plane rotation. MDCP has smaller dipole moment located in the plane of the molecule; however, presence of the change of curvature of dielectric loss, ε″(f), at some frequency on the high-frequency flank of the α-relaxation reveals the JG ß-relaxation in MDCP and which is in accord with the CM prediction. QN has as large an in-plane dipole moment as 1MID, and the absence of the resolved secondary relaxation is explained by the smaller coupling parameter than the latter in the framework of the CM.

3.
J Phys Chem B ; 116(1): 22-9, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22117763

RESUMEN

By using the dielectric relaxation method, we studied molecular dynamics of α-tetralone. Our purpose was to reveal the molecular origin of secondary processes observed for this very simple-structured molecule. To this end, we carried out dielectric measurements at both ambient and elevated pressure of neat α-tetralone and in mixture with oligostyrene. By means of both experimental observations and theoretical calculations, we proved that one of the secondary relaxations has the intramolecular origin, while the other is undoubtedly the intermolecular process called Johari-Goldstein relaxation characteristic of the glassy state.


Asunto(s)
Simulación de Dinámica Molecular , Estirenos/química , Tetralonas/química , Presión , Soluciones/química
4.
Phys Chem Chem Phys ; 9(33): 4673-89, 2007 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-17700869

RESUMEN

When more than two kinds of mobile ions are mixed in ionic conducting glasses and crystals, there is a non-linear decrease of the transport coefficients of either type of ion. This phenomenon is known as the mixed mobile ion effect or Mixed Alkali Effect (MAE), and remains an unsolved problem. We use molecular dynamics simulation to study the complex ion dynamics in ionically conducting glasses including the MAE. In the mixed alkali lithium-potassium silicate glasses and related systems, a distinct part of the van Hove functions reveals that jumps from one kind of site to another are suppressed. Although, consensus for the existence of preferential jump paths for each kind of mobile ions seems to have been reached amongst researchers, the role of network formers and the number of unoccupied ion sites remain controversial in explaining the MAE. In principle, these factors when incorporated into a theory can generate the MAE, but in reality they are not essential for a viable explanation of the ion dynamics and the MAE. Instead, dynamical heterogeneity and "cooperativity blockage" originating from ion-ion interaction and correlation are fundamental for the observed ion dynamics and the MAE. Suppression of long range motion with increased back-correlated motions is shown to be a cause of the large decrease of the diffusivity especially in dilute foreign alkali regions. Support for our conclusion also comes from the fact that these features of ion dynamics are common to other ionic conductors, which have no glassy networks, and yet they all exhibit the MAE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...