Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Skin Res Technol ; 30(4): e13682, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38616504

RESUMEN

BACKGROUND: Natural products are often friendly and can be used on children's skin after systematic and careful research. Therefore, in this study, the Royal Oji Complex (ROC), a product with natural ingredients, was used to study their effectiveness on keratinocytes taken from the skin of children from 0 to 3 years old. METHOD: Normal human epidermal keratinocytes and tissue-isolated keratinocytes (TIKC) from young donors were treated with three different concentrations of ROC: 0.1, 1, and 10 ppm. The mRNA expression of the epidermal barrier's essential genes, such as hyaluronic acid synthase 3 (Has3), involucrin (IVL), loricrin (LOR), and claudin-1 (CLD1) was investigated using qRT-PCR. Ceramide content was measured by ELISA, with retinoic acid (R.A.) and amarogentin (AMA) serving as positive controls. RESULTS: ROC significantly elevated HAS3 gene expression in HEKn cells, especially at 10 ppm, indicating potential advantages for skin hydration in young infants. IVL increased at first but decreased as ROC concentrations increased. LOR was upregulated at lower ROC concentrations but reduced at higher doses. CLD1 gene expression increased considerably in HEKn but reduced with increasing ROC doses. Ceramide concentration increased somewhat but not significantly at 10 ppm. CONCLUSION: ROC shows potential in altering keratinocyte gene expression, with unique responses in HEKn and TIKC from young donors. While changes in ceramide content were insignificant, these results help to comprehend ROC's multiple effects on young children's skin.


Asunto(s)
Queratinocitos , Piel , Niño , Lactante , Humanos , Preescolar , Recién Nacido , Epidermis , Ceramidas , Donantes de Tejidos
2.
Anal Chem ; 93(24): 8638-8646, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110775

RESUMEN

In situ wireless monitoring for cell proliferation and detachment kinetics was conducted using pH-responsive zwitterionic polymer dots (Z-PDs), based on changes in electrochemical signals derived from Z-PD-coated substrates via the interaction of charges transferred between Z-PDs and cells. Z-PD-coated substrates were found to be a potent means to monitor and manipulate cell adhesion and detachment because of their high sensitivity over a wide range of pH conditions, and modification of the coated substrates was confirmed using a wireless system. At neutral pH, Z-PD-coated wireless sensors exhibited π-π stacking involving aromatic rings with hydrophobic interactions, thereby promoting cell proliferation; consequently, an increase in the measured resistance was observed. In contrast, Z-PD-coated substrates triggered by acidic and basic conditions promoted cell detachment, which induced an increase in the resistance compared with Z-PD substrates at pH 6.8, as a result of charges transferred to support Z-PD internalization through cell membranes after detachment. Therefore, as a wireless biosensor with excellent pH responsiveness that facilitates cell proliferation and detachment and whose electrochemical signals could be additionally acquired via a smartphone, Z-PD biosensors demonstrated a more favorable approach for monitoring cell-surface interactions than conventional optically based methods.


Asunto(s)
Polímeros , Proliferación Celular , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA