Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346652

RESUMEN

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Asunto(s)
COVID-19 , Quirópteros , Animales , Filogenia , Variación Genética , Análisis de Secuencia de ADN , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Genómica
2.
EBioMedicine ; 86: 104376, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36436279

RESUMEN

BACKGROUND: Detection of spliced leader (SL)-RNA allows sensitive diagnosis of gambiense human African trypanosomiasis (HAT). We investigated its diagnostic performance for treatment outcome assessment. METHODS: Blood and cerebrospinal fluid (CSF) from a consecutive series of 97 HAT patients, originating from the Democratic Republic of the Congo, were prospectively collected before treatment with acoziborole, and during 18 months of longitudinal follow-up after treatment. For treatment outcome assessment, SL-RNA detection was compared with microscopic trypanosome detection and CSF white blood cell count. The trial was registered under NCT03112655 in clinicaltrials.gov. FINDINGS: Before treatment, respectively 94.9% (92/97; CI 88.5-97.8%) and 67.7% (65/96; CI 57.8-76.2%) HAT patients were SL-RNA positive in blood or CSF. During follow-up, one patient relapsed with trypanosomes observed at 18 months, and was SL-RNA positive in blood and CSF at 12 months, and CSF positive at 18 months. Among cured patients, one individual tested SL-RNA positive in blood at month 12 (Specificity 98.9%; 90/91; CI 94.0-99.8%) and 18 (Specificity 98.9%; 88/89; CI 93.9-99.8%). INTERPRETATION: SL-RNA detection for HAT treatment outcome assessment shows ≥98.9% specificity in blood and 100% in CSF, and may detect relapses without lumbar puncture. FUNDING: The DiTECT-HAT project is part of the EDCTP2 programme, supported by Horizon 2020, the European Union Funding for Research and Innovation (grant number DRIA-2014-306-DiTECT-HAT).


Asunto(s)
Antiprotozoarios , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Antiprotozoarios/uso terapéutico , Estudios de Seguimiento , ARN Lider Empalmado , Resultado del Tratamiento , Trypanosoma brucei gambiense/genética , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/tratamiento farmacológico
3.
Microbiol Resour Announc ; 10(49): e0088221, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34881972

RESUMEN

Enteroviruses infect humans and animals and can cause disease, and some may be transmitted across species barriers. We tested Central African wildlife and found Enterovirus RNA in primates (17) and rodents (2). Some sequences were very similar, while others were dissimilar to known species, highlighting the underexplored enterovirus diversity in wildlife.

4.
PLoS Negl Trop Dis ; 15(9): e0009739, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34534223

RESUMEN

BACKGROUND: Spliced Leader (SL) trypanosome RNA is detectable only in the presence of live trypanosomes, is abundant and the Trypanozoon subgenus has a unique sequence. As previously shown in blood from Guinean human African trypanosomiasis (HAT) patients, SL-RNA is an accurate target for diagnosis. Detection of SL-RNA in the cerebrospinal fluid (CSF) has never been attempted. In a large group of Congolese gambiense HAT patients, the present study aims i) to confirm the sensitivity of SL-RNA detection in the blood and; ii) to assess the diagnostic performance of SL-RNA compared to trypanosome detection in CSF. METHODOLOGY/PRINCIPAL FINDINGS: Blood and CSF from 97 confirmed gambiense HAT patients from the Democratic Republic of Congo were collected using PAXgene blood RNA Tubes. Before RNA extraction, specimens were supplemented with internal extraction control RNA to monitor the extraction, which was performed with a PAXgene Blood RNA Kit. SL-RNA qPCR was carried out with and without reverse transcriptase to monitor DNA contamination. In blood, 92/97 (94.8%) HAT patients tested SL-RNA positive, which was significantly more than combined trypanosome detection in lymph and blood (78/97 positive, 80.4%, p = 0.001). Of 96 CSF RNA specimens, 65 (67.7%) were SL-RNA positive, but there was no significant difference between sensitivity of SL-RNA and trypanosome detection in CSF. The contribution of DNA to the Cq values was negligible. In CSF with normal cell counts, a fraction of SL-RNA might have been lost during extraction as indicated by higher internal extraction control Cq values. CONCLUSIONS/SIGNIFICANCE: Detection of SL-RNA in blood and CSF allows sensitive demonstration of active gambiense HAT infection, even if trypanosomes remain undetectable in blood or lymph. As this condition often occurs in treatment failures, SL-RNA detection in blood and CSF for early detection of relapses after treatment deserves further investigation. TRIAL REGISTRATION: This study was an integral part of the diagnostic trial "New Diagnostic Tools for Elimination of Sleeping Sickness and Clinical Trials: Early tests of Cure" (DiTECT-HAT-WP4, ClinicalTrials.gov Identifier: NCT03112655).


Asunto(s)
ARN Protozoario/genética , ARN Protozoario/aislamiento & purificación , Trypanosoma brucei gambiense , Tripanosomiasis Africana/parasitología , República Democrática del Congo/epidemiología , Humanos , ARN Protozoario/sangre , ARN Protozoario/líquido cefalorraquídeo , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/líquido cefalorraquídeo , Tripanosomiasis Africana/epidemiología
5.
Intervirology ; 61(4): 155-165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30448834

RESUMEN

OBJECTIVE: Herpesviruses belong to a diverse order of large DNA viruses that can cause diseases in humans and animals. With the goal of gathering information about the distribution and diversity of herpesviruses in wild rodent and shrew species in central Africa, animals in Cameroon and the Democratic Republic of the Congo were sampled and tested by PCR for the presence of herpesvirus DNA. METHODS: A broad range PCRs targeting either the Polymerase or the terminase gene were used for virus detection. Amplified products from PCR were sequenced and isolates analysed for phylogenetic placement. RESULTS: Overall, samples of 1,004 animals of various rodent and shrew species were tested and 24 were found to be positive for herpesvirus DNA. Six of these samples contained strains of known viruses, while the other positive samples revealed DNA sequences putatively belonging to 11 previously undescribed herpesviruses. The new isolates are beta- and gammaherpesviruses and the shrew isolates appear to form a separate cluster within the Betaherpesvirinae subfamily. CONCLUSION: The diversity of viruses detected is higher than in similar studies in Europe and Asia. The high diversity of rodent and shrew species occurring in central Africa may be the reason for a higher diversity in herpesviruses in this area.


Asunto(s)
ADN Viral/análisis , Variación Genética , Herpesviridae/clasificación , Herpesviridae/aislamiento & purificación , Roedores/virología , Musarañas/virología , Animales , Asia , Camerún , ADN Viral/genética , República Democrática del Congo , Herpesviridae/genética , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
6.
J Gen Virol ; 99(5): 676-681, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29583115

RESUMEN

Bocaparvoviruses are members of the family Parvovirinae and human bocaviruses have been found to be associated with respiratory and gastrointestinal disease. There are four known human bocaviruses, as well as several distinct ones in great apes. The goal of the presented study was to detect other non-human primate (NHP) bocaviruses in NHP species in the Democratic Republic of the Congo using conventional broad-range PCR. We found bocavirus DNA in blood and tissues samples in 6 out of 620 NHPs, and all isolates showed very high identity (>97 %) with human bocaviruses 2 or 3. These findings suggest cross-species transmission of bocaviruses between humans and NHPs.


Asunto(s)
ADN Viral/aislamiento & purificación , Bocavirus Humano/genética , Infecciones por Parvoviridae/veterinaria , Primates/virología , Animales , ADN Viral/sangre , República Democrática del Congo , Genoma Viral , Filogenia , Reacción en Cadena de la Polimerasa
7.
PLoS Negl Trop Dis ; 8(10): e3212, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25275572

RESUMEN

BACKGROUND: Sleeping sickness caused by Trypanosoma brucei (T.b.) gambiense constitutes a serious health problem in sub-Sahara Africa. In some foci, alarmingly high relapse rates were observed in patients treated with melarsoprol, which used to be the first line treatment for patients in the neurological disease stage. Particularly problematic was the situation in Mbuji-Mayi, East Kasai Province in the Democratic Republic of the Congo with a 57% relapse rate compared to a 5% relapse rate in Masi-Manimba, Bandundu Province. The present study aimed at investigating the mechanisms underlying the high relapse rate in Mbuji-Mayi using an extended collection of recently isolated T.b. gambiense strains from Mbuji-Mayi and from Masi-Manimba. METHODOLOGY/PRINCIPAL FINDINGS: Forty five T.b. gambiense strains were used. Forty one were isolated from patients that were cured or relapsed after melarsoprol treatment in Mbuji-Mayi. In vivo drug sensitivity tests provide evidence of reduced melarsoprol sensitivity in these strains. This reduced melarsoprol sensitivity was not attributable to mutations in TbAT1. However, in all these strains, irrespective of the patient treatment outcome, the two aquaglyceroporin (AQP) 2 and 3 genes are replaced by chimeric AQP2/3 genes that may be associated with resistance to pentamidine and melarsoprol. The 4 T.b. gambiense strains isolated in Masi-Manimba contain both wild-type AQP2 and a different chimeric AQP2/3. These findings suggest that the reduced in vivo melarsoprol sensitivity of the Mbuji-Mayi strains and the high relapse rates in that sleeping sickness focus are caused by mutations in the AQP2/AQP3 locus and not by mutations in TbAT1. CONCLUSIONS/SIGNIFICANCE: We conclude that mutations in the TbAQP2/3 locus of the local T.b. gambiense strains may explain the high melarsoprol relapse rates in the Mbuji-Mayi focus but other factors must also be involved in the treatment outcome of individual patients.


Asunto(s)
Acuagliceroporinas/genética , Melarsoprol/farmacología , Tripanocidas/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Tripanosomiasis Africana/parasitología , Adulto , Animales , Secuencia de Bases , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , República Democrática del Congo , Resistencia a Medicamentos/genética , Femenino , Genotipo , Humanos , Melarsoprol/uso terapéutico , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/genética , Mutación , Pentamidina/farmacología , Fenotipo , Recurrencia , Análisis de Secuencia de ADN , Tripanocidas/uso terapéutico , Trypanosoma brucei gambiense/genética , Tripanosomiasis Africana/tratamiento farmacológico
8.
PLoS Negl Trop Dis ; 5(4): e1025, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21526217

RESUMEN

BACKGROUND: Sleeping sickness due to Trypanosoma brucei (T.b.) gambiense is still a major public health problem in some central African countries. Historically, relapse rates around 5% have been observed for treatment with melarsoprol, widely used to treat second stage patients. Later, relapse rates of up to 50% have been recorded in some isolated foci in Angola, Sudan, Uganda and Democratic Republic of the Congo (DRC). Previous investigations are not conclusive on whether decreased sensitivity to melarsoprol is responsible for these high relapse rates. Therefore we aimed to establish a parasite collection isolated from cured as well as from relapsed patients for downstream comparative drug sensitivity profiling. A major constraint for this type of investigation is that T.b. gambiense is particularly difficult to isolate and adapt to classical laboratory rodents. METHODOLOGY/PRINCIPAL FINDINGS: From 360 patients treated in Dipumba hospital, Mbuji-Mayi, D.R. Congo, blood and cerebrospinal fluid (CSF) was collected before treatment. From patients relapsing during the 24 months follow-up, the same specimens were collected. Specimens with confirmed parasite presence were frozen in liquid nitrogen in a mixture of Triladyl, egg yolk and phosphate buffered glucose solution. Isolation was achieved by inoculation of the cryopreserved specimens in Grammomys surdaster, Mastomys natalensis and SCID mice. Thus, 85 strains were isolated from blood and CSF of 55 patients. Isolation success was highest in Grammomys surdaster. Forty strains were adapted to mice. From 12 patients, matched strains were isolated before treatment and after relapse. All strains belong to T.b. gambiense type I. CONCLUSIONS AND SIGNIFICANCE: We established a unique collection of T.b. gambiense from cured and relapsed patients, isolated in the same disease focus and within a limited period. This collection is available for genotypic and phenotypic characterisation to investigate the mechanism behind abnormally high treatment failure rates in Mbuji-Mayi, D.R. Congo.


Asunto(s)
Antiprotozoarios/administración & dosificación , Melarsoprol/administración & dosificación , Trypanosoma brucei gambiense/crecimiento & desarrollo , Trypanosoma brucei gambiense/aislamiento & purificación , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Adaptación Biológica , Animales , Sangre/parasitología , Líquido Cefalorraquídeo/parasitología , Femenino , Humanos , Masculino , Ratones , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...