Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7733, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007516

RESUMEN

Nephron endowment at birth impacts long-term renal and cardiovascular health, and it is contingent on the nephron progenitor cell (NPC) pool. Glycolysis modulation is essential for determining NPC fate, but the underlying mechanism is unclear. Combining RNA sequencing and quantitative proteomics we identify 267 genes commonly targeted by Wnt activation or glycolysis inhibition in NPCs. Several of the impacted pathways converge at Acetyl-CoA, a co-product of glucose metabolism. Notably, glycolysis inhibition downregulates key genes of the Mevalonate/cholesterol pathway and stimulates NPC differentiation. Sodium acetate supplementation rescues glycolysis inhibition effects and favors NPC maintenance without hindering nephrogenesis. Six2Cre-mediated removal of ATP-citrate lyase (Acly), an enzyme that converts citrate to acetyl-CoA, leads to NPC pool depletion, glomeruli count reduction, and increases Wnt4 expression at birth. Sodium acetate supplementation counters the effects of Acly deletion on cap-mesenchyme. Our findings show a pivotal role of acetyl-CoA metabolism in kidney development and uncover new avenues for manipulating nephrogenesis and preventing adult kidney disease.


Asunto(s)
Riñón , Nefronas , Acetilcoenzima A/metabolismo , Acetato de Sodio/metabolismo , Riñón/metabolismo , Células Madre/metabolismo
3.
Biochem Pharmacol ; 206: 115341, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356658

RESUMEN

Our studies demonstrated the critical role of Histone deacetylases (HDACs) in the regulation of nephrogenesis. To better understand the key pathways regulated by HDAC1/2 in early nephrogenesis, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) of HDAC1/2 on isolated nephron progenitor cells (NPCs) from mouse E16.5 kidneys. Our analysis revealed that 11,802 (40.4%) of HDAC1 peaks overlap with HDAC2 peaks, further demonstrates the redundant role of HDAC1 and HDAC2 during nephrogenesis. Common HDAC1/2 peaks are densely concentrated close to the transcriptional start site (TSS). GREAT Gene Ontology analysis of overlapping HDAC1/2 peaks reveals that HDAC1/2 are associated with metanephric nephron morphogenesis, chromatin assembly or disassembly, as well as other DNA checkpoints. Pathway analysis shows that negative regulation of Wnt signaling pathway is one of HDAC1/2's most significant function in NPCs. Known motif analysis indicated that Hdac1 is enriched in motifs for Six2, Hox family, and Tcf family members, which are essential for self-renewal and differentiation of nephron progenitors. Interestingly, we found the enrichment of HDAC1/2 at the enhancer and promoter regions of actively transcribed genes, especially those concerned with NPC self-renewal. HDAC1/2 simultaneously activate or repress the expression of different genes to maintain the cellular state of nephron progenitors. We used the Integrative Genomics Viewer to visualize these target genes associated with each function and found that HDAC1/2 co-bound to the enhancers or/and promoters of genes associated with nephron morphogenesis, differentiation, and cell cycle control. Taken together, our ChIP-Seq analysis demonstrates that HDAC1/2 directly regulate the molecular cascades essential for nephrogenesis.


Asunto(s)
Redes Reguladoras de Genes , Nefronas , Animales , Ratones , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Nefronas/metabolismo , Células Madre/fisiología , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...