Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Evid Based Integr Med ; 28: 2515690X231211661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37960857

RESUMEN

Amaranthus dubius is a vegetable consumed for its nutritional content in Kenya. In herbal medicine, A. dubius is utilized to relief fever, anemia and hemorrhage. Additionally, it is utilized to manage cognitive dysfunction and is considered to augment brain function, but there is no empirical evidence to support this claim. The contemporary study investigated cognitive enhancing potential of A. dubius in mice model of Alzheimer's disease (AD)-like dementia induced with ketamine. Cognitively damaged mice were treated with aqueous extract of A. dubius leaf upon which passive avoidance task (PAT) was used to assess the cognitive performance. At the end of passive avoidance test, brains of the mice were dissected to evaluate the possibility of the extract to inhibit hallmarks that propagate AD namely oxidative stress and acetylcholinesterase activity. Additionally, characterization of secondary metabolites was done using liquid chromatograph- mass spectrometry analysis. During PAT test, extract-treated mice showed significantly increased step-through latencies than AD mice, depicting ability of A. dubius to reverse ketamine-induced cognitive decline. Further, the extract remarkably lowered malondialdehyde levels to normal levels and effectively inhibited acetylcholinesterase enzyme. The study showed that A. dubius extract is endowed with phytoconstituents that possess anti-oxidant and anticholinesterase activities. Thus, this study confirmed promising therapeutic effects of 200, 300 and 400 mg/kg bw of A. dubius extract with potential to alleviate cognitive disarray observed in AD.


Asunto(s)
Enfermedad de Alzheimer , Ketamina , Ratones , Animales , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Ketamina/efectos adversos , Cognición , Extractos Vegetales/uso terapéutico
2.
Lupus Sci Med ; 10(2)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37989321

RESUMEN

OBJECTIVE: In this study, we investigated the in vivo ameliorative effects of vitamin E in a hydralazine-induced lupus model, which closely resembles SLE in humans. We aim to shed light on its potential as a therapeutic agent for managing SLE. METHODS: Forty BALB/c mice were used in this study. Hydralazine hydrochloride was orally administered in a concentration of 25 mg/kg to the five mice groups once weekly for a period of 5 weeks to induce a lupus-like condition. The untreated group was the normal control group. To confirm the development of lupus, an ANA test was conducted. After the mice tested positive for ANA, drug treatments commenced. The negative control group did not receive any drug treatment. The treatments included prednisolone, methotrexate and vitamin E, all administered at a concentration of 25 mg/kg, with a higher dose of vitamin E (50 mg/kg) also administered. RESULTS: Notably, on day 35, after drug treatment, we observed that mice that received vitamin E at a dosage of 50 mg/kg (3.01±0.100) had a slight decrease in lymphocyte hydrogen peroxide radicals when compared with the group receiving 25 mg/kg of vitamin E (3.30±0.100) (p<0.05). This finding suggests that the scavenging potential of vitamin E is dose dependent. CONCLUSION: This study suggests that vitamin E supplementation, especially at a higher dose (50 mg/kg), holds promise in ameliorating lupus-like conditions. These findings warrant further exploration and may offer a potential avenue for improving the disease status of patients experiencing SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Vitamina E , Humanos , Animales , Ratones , Vitamina E/farmacología , Vitamina E/uso terapéutico , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/tratamiento farmacológico , Hidralazina/farmacología , Hidralazina/uso terapéutico
3.
J Evid Based Integr Med ; 28: 2515690X231187711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37489007

RESUMEN

Cancer mortality is a global concern. The current therapeutic approaches despite showing efficacy are characterized by several limitations. Search for alternatives has led to the use of herbal plants including C. edulis and P. capensis. However, there is limited research on antiproliferative effects of these medicinal plants. The study sought to evaluate antiproliferative effects of the plants against human breast and prostate cancers using cell viability, and gene expression assays to determine modulation of apoptotic genes. Further, Liquid Chromatography Mass Spectrophotometer (LC-MS) and Gas Chromatography Mass Spectrophotometer (GC-MS) analyses were performed to confirm phytocompounds in the extracts. The results indicated that ethylacetate extracts of C. edulis and P. capensis had the highest activity against cancer cells with IC50 values of 2.12 ± 0.02, and 6.57 ± 0.03 µg/ml on HCC 1395 and 2.92 ± 0.17 and 5.00 ± 0.17 µg/ml on DU145, respectively. Moreover, the plants extracts exhibited relatively less cytotoxic activities against Vero cell lines (IC50 > 20 µg/ml). The extracts also exhibit selectivity against the cancer cells (SI > 3). Further, mRNA expression of p53 in the treated HCC 1395 was increased by 7 and 3-fold, whereas by 3 and 2-fold in DU145 cells, upon treatment with ethylacetate extracts of C. edulis and P. capensis, respectively. Similarly, several-fold increases were observed in the number of transcripts of Bax in HCC 1395 and HOXB13 in DU145 cells. Phytochemical analyses detected presence of phytocompounds including flavonoids, phenolics, tocopherols and terpenoids which are associated with anticancer activity. Findings from this study provide a scientific validation for the folklore use of these plants in management of cancer.


Asunto(s)
Apocynaceae , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Extractos Vegetales/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Fitoquímicos/farmacología
4.
Heliyon ; 9(3): e14461, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925541

RESUMEN

Conventional antibiotics are associated with various side-effects. Therefore, there is need of using plant-derived antibiotics with fewer side-effects. Grewia tembensis and Xerophyta spekei, which have been extensively utilized in the Mbeere community, were studied to support their folkloric use and demonstrate their antibacterial capabilities. Salmonella Typhi ATCC 1408, Bacillus subtilis ATCC 21332, Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922 were all used in this study. As a standard reference, Ciprofloxacin (100 µg/ml) was employed, and 5% DMSO was used as a negative reference. Tests for antibacterial activities included disc diffusion, minimum inhibitory concentrations, and bactericidal concentrations. G. tembensis exhibited effects on S. aureus only with Mean Zone Inhibition (MZI) of 07.07 ± 0.07 to 12.33 ± 0.33 mm and 08.33 ± 0.33 to 11.67 ± 0.33 mm for stem bark and leaf extracts respectively. While X. spekei extract had effects on S. aureus with MZI of 07.67 ± 0.33 to 14.67 ± 0.33 mm and B. subtilis with MZI of 09.67 ± 0.33 to 14.33 ± 0.33 mm. Ciprofloxacin demonstrated significantly higher activities as compared to the plant extracts in all the concentrations (p < 0.05), while 5% DMSO had no activity. GC-MS analysis demonstrated the availability of compounds with known antibacterial effects. Therefore, the current study recommends ethnomedicinal and therapeutic use of G. tembensis and X. spekei as antibacterial agents.

5.
Heliyon ; 9(1): e12965, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36747936

RESUMEN

Herbal medications are gaining popularity due to their long history of use in traditional medicine. They serve as a reservoir for a diverse array of phytocompounds linked to amelioration of oxidative stress. Oxidative stress is a disturbance in the balance between generation and elimination of reactive species in human body. Moreover, reactive species are implicated in the onset and progression of chronic disorders. The current therapeutic approaches despite showing efficacy are characterized by several limitations such as adverse effects and prohibitive costs. This drives the need to explore alternatives that can inhibit, ameliorate or reverse conditions caused by oxidative stress. Several studies have evaluated antioxidant effects of diverse plant extracts. C. edulis and P. capensis are used as traditional therapy among the African communities to manage oxidative stress-related ailments. However, there is limited research on the antioxidant effects of these medicinal plants. The current study, therefore, sought to evaluate the antioxidant and phytochemical profile, of C. edulis and P. capensis extracts. Samples were collected from Embu County, Kenya. In vitro antioxidant properties of the extracts were evaluated through ferric reduction, Iron chelating, hydroxyl radical, and DPPH radical scavenging activities. Activities of catalase, superoxide dismutase and glutathione reductases of the extracts were further determined. Phytochemical profiles were determined using Liquid Chromatography Mass Spectrophotometer (LC-MS) and Gas Chromatography Mass Spectrophotometer (GC-MS) analyses. The extracts displayed concentration dependent antioxidant activities. Phytochemical analyses revealed presence compounds which are associated with antioxidant activities including flavonoids, phenolics, tocopherols and terpenoids. The findings provide a scientific validation for the folklore use of C. edulis and P. capensis in management of oxidative stress. Nevertheless, there is a need for further purification and characterization of phytochemicals associated with antioxidant activities.

6.
Scientifica (Cairo) ; 2023: 6652112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188987

RESUMEN

Diabetes mellitus is a chronic metabolic disorder which has greatly led to an increase in morbidity and mortality globally. Although Xerophyta spekei is widely used for the management of diabetes among the Embu and Mbeere communities in Kenya, it has never been empirically evaluated for its hypoglycemic activity. This study was carried out to verify the hypoglycemic activity of dichloromethane (DCM) extract of Xerophyta spekei as well as its antioxidant activity using various in vitro techniques. Phytochemicals associated with its antioxidant activity were identified through GC-MS. Data were subjected to descriptive statistics and expressed as mean ± standard error of the mean (X̄ ± SEM). Comparison between various variables was performed by using unpaired Student's t-test and one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test. The confidence interval was set at 95%. The obtained results were presented in tables and graphs. Results showed that there was no difference in α-amylase inhibition activity between the plant extract and the standard (IC50 525.9 ± 12.34 and 475.1 ± 9.115, respectively; p > 0.05). Besides, the glucose adsorption activity of the extract increased with an increase in glucose concentration (from 5.89 to 32.64 mg/dl at 5 mmol and 30 mmol of glucose, respectively; p < 0.05). The extract also limited the diffusion of glucose more than the negative control (7.49 and 17.63 mg/dl, respectively; p < 0.05). It also enhanced glucose uptake by yeast cells. In addition, the studied plant extract showed notable antioxidant activities. The therapeutic effects exhibited by this plant in managing diabetes mellitus and other ailments could be due to its antioxidant as well as its hypoglycemic activity. The study recommends the evaluation of X. spekei for in vivo hypoglycemic and antioxidant activities. Besides, the isolation of bioactive phytochemicals from the plant may lead to the development of new hypoglycaemic agents.

7.
Front Plant Sci ; 13: 1009860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388608

RESUMEN

Cassava is the world's most essential food root crop, generating calories to millions of Sub-Saharan African subsistence farmers. Cassava leaves and roots contain toxic quantities of the cyanogenic glycoside linamarin. Consumption of residual cyanogens results in cyanide poisoning due to conversion of the cyanogens to cyanide in the body. There is a need for acyanogenic cassava cultivars in order for it to become a consistently safe and acceptable food, and commercial crop. In recent years, the CRISPR/Cas system, has proven to be the most effective and successful genome editing tool for gene function studies and crop improvement. In this study, we performed targeted mutagenesis of the MeCYP79D1 gene in exon 3, using CRISPR/Cas9, via Agrobacterium-mediated transformation. The vector design resulted in knockout in cotyledon-stage somatic embryos regenerated under hygromycin selection. Eight plants were recovered and genotyped. DNA sequencing analysis revealed that the tested putative transgenic plants carried mutations within the MeCYP79D1 locus, with deletions and substitutions being reported upstream and downstream of the PAM sequence, respectively. The levels of linamarin and evolved cyanide present in the leaves of mecyp79d1 lines were reduced up to seven-fold. Nevertheless, the cassava linamarin and cyanide were not completely eliminated by the MeCYP79D1 knockout. Our results indicate that CRISPR/Cas9-mediated mutagenesis is as an alternative approach for development of cassava plants with lowered cyanide content.

8.
Heliyon ; 8(12): e12289, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36593834

RESUMEN

Alzheimer's disease is ranked among the top five causes of death for old people. Globally, it is approximated that there are 7.7 million new cases of Alzheimer's disease per annum and it is expected that by the year 2050, as many as 1.5% of people will be victims of Alzheimers or other types of dementia. Currently there is no cure for Alzheimer's disease and the conventional therapeutics agents available either have low efficacy or are associated with serious side effects. In the current study, in vivo cognitive advancing and anticholinesterase effects of crude methanol extracts of stem bark and leaf of Prunus africana were investigated in scopolamine treated mice. Passive avoidance task was used to evaluate cognitive enhancing effects of the two plant extracts. Donepezil was used as the standard drug. Scopolamine butylbromide (5 mg/kg bw) was administered intraperitoneally to induce Alzheimer's disease in mice during the study. A completely controlled randomised experimental design was employed in the current study. The two extracts displayed significant anticholinesterase activities and improved cognition in a dose dependent fashion as indicated by escape latency trends. From the current study, it is concluded that methanol extracts of stem bark and leaf of P. africana contain phytochemicals with anticholinesterase activity and cognitive enhancing effects in scopolamine treated mice. The study therefore supports use of leaf and stem bark extracts of P. africana for management of dementia by traditional herbal practitioners.

9.
J Evid Based Integr Med ; 26: 2515690X211064585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34881674

RESUMEN

The root and leaf extracts of Launaea cornuta have been locally used in traditional medicine for decades to manage inflammatory conditions and other oxidative-stress-related syndromes; however, their pharmacologic efficacy has not been scientifically investigated and validated. Accordingly, we investigated the in vitro antioxidant activity, anti-inflammatory (in vitro, ex vivo, and in vivo) efficacy, acute oral toxicity, and qualitative phytochemical composition of the aqueous root extract of L. cornuta. The ferric-reducing antioxidant power (FRAP) and the 2,2-diphenyl-2-pycrylhydrazyl (DPPH) radical scavenging test methods were used to determine the studied plant extract's antioxidant activity. Besides, the anti-inflammatory efficacy of the studied plant extract was investigated using in vitro (anti-proteinase and protein denaturation), ex vivo (membrane stabilization), and in vivo (carrageenan-induced paw oedema in Swiss albino mice) methods. The studied plant extract demonstrated significant in vitro antioxidant effects, which were evidenced by higher DPPH radical scavenging and FRAP activities, in a concentration-dependent manner (p < 0.05). Generally, the studied plant extract exhibited significant in vitro, ex vivo, and in vivo anti-inflammatory efficacy, respectively, and in a concentration/dose-dependent manner compared with respective controls (p < 0.05). Moreover, the studied plant extract did not cause any observable signs of acute oral toxicity, even at the cut-off dose of 2000 mg/Kg BW (LD50 > 2000 mg/Kg BW), and was thus considered safe. Additionally, qualitative phytochemistry revealed the presence of various antioxidant- and anti-inflammatory-associated phytochemicals, which were deemed responsible for the reported pharmacologic efficacy. Further studies to characterise bioactive molecules and their mode(s) of pharmacologic efficacy are encouraged.


Asunto(s)
Antioxidantes , Asteraceae , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Edema/tratamiento farmacológico , Ratones , Extractos Vegetales/uso terapéutico
10.
Artículo en Inglés | MEDLINE | ID: mdl-34876913

RESUMEN

The function of innate hemostasis aids the body in bleeding control, preventing the loss of excessive amounts of blood following low-degree injuries. However, injuries of a higher degree may require extrinsic intervention to stop life-threatening blood loss. Astringent agents' actions result in mechanical constriction of small blood vessels and shrinkage of body tissues, thereby stopping blood loss. This enhances the primary phase of hemostasis, where vasoconstriction is the main mechanism at play during the initial response to injury. The effects of plant extracts on protein precipitation have been linked to blood vessel vasoconstriction. Traditionally, the leaves of Croton megalocarpus Hutch and Lantana camara Linn plants are used by communities living in Makueni County, Kenya, for peripheral bleeding control. However, the effects of extracts of both plants on hemoglobin precipitation have not been evaluated scientifically. In the current study, the activities of methanol extracts of C. megalocarpus (H.) and L. camara (L.) on blood protein precipitation were investigated. The leaves were harvested, cleaned, air-dried, milled, and extracted in absolute methanol before being concentrated into dry powders. A qualitative phytochemical screen revealed the presence of terpenoids, steroids, tannins, phenols, flavonoids, reducing sugars, cardiac glycosides, and carbohydrates in the methanol extract of C. megalocarpus (H.). The methanol extracts of L. camara (L.) contained cardiac glycosides, saponins, tannins, phenols, terpenoids, reducing sugars, and carbohydrates. The hemoglobin precipitation ability of various concentrations of extracts using mice samples was presented as relative astringency following the tannic acid external standard method. Methanol extracts C. megalocarpus (H.) and L. camara (L.) had significantly higher relative astringency compared with the normal control, indicating a protein precipitating activity. The relative astringency observed in both plant extracts is linked to the activity of tannins, phenols, flavonoids, and saponins detected during preliminary phytochemical screening.

11.
Afr Health Sci ; 21(1): 397-409, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34394322

RESUMEN

BACKGROUND: Inflammation is an immune response characterized by swelling, redness, pain and heat. Inflammation is mainly managed using conventional medicines that are associated with many side effects. Plant-based remedies are considerably better alternative therapies for they have fewer side effects. OBJECTIVE: This study aimed at determining the anti-inflammatory potential of dichloromethane (DCM) leaf extracts of Eucalyptus globulus and Senna didymobotrya in mice. METHODS: Fresh leaves of these plants were harvested from Embu County, Kenya. Quantitative phytochemical analysis was done using Gas Chromatography-Mass Spectrometry (GC-MS). Anti-inflammatory test comprised nine groups of five animals each: normal, negative, positive controls and 6 experimental groups. Inflammation was induced with Carrageenan. One hour post-treatment, the different groups were intraperitoneally administered with the reference drug, diclofenac, 3% DMSO and six DCM leaf extracts at doses of 25, 50, 100, 150, 200 and 250mg/kgbw. RESULTS: GC-MS results revealed α-phellandrene, camphene, terpinolene, and limonene among others. Anti-inflammatory effects showed that extract doses of 100,150,200 and 250mg/kg bw significantly reduced the inflamed paw. Doses of 200 and 250mg/kgbw in both plants were more potent and compared with diclofenac. E. globulus extract dose of 250mg kg bw reduced inflamed paw in the 1st, 2nd, 3rd and 4th hours, by 2.27,6.52,9.09 and 10.90% respectively while S.didymobotrya at similar dose ranges, inflamed paw reduced by 2.41, 5.43, 8.31 and 9.05% respectively. CONCLUSION: E. globulus and S. didymobotrya have potent anti-inflammatory activities, attributed to their constituent phytochemicals. This study confirms the traditional use of these plants in treating inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Eucalyptus/química , Inflamación/tratamiento farmacológico , Cloruro de Metileno/efectos adversos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Humanos , Kenia , Masculino , Ratones
12.
Heliyon ; 7(5): e07145, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34136700

RESUMEN

Oxidative stress causes and drives many agonising inflammatory conditions, which cause disability, financial burden, and emotional stress. The current anti-inflammatory, analgesic, and antioxidant agents are associated with adverse effects, inaccessibility, high costs, and low efficacies, thereby warranting the need for alternatives, especially from natural sources. Lonchocarpus eriocalyx plant is traditionally used in Kenyan communities to treat various inflammatory and oxidative stress-associated diseases; however, its pharmacologic efficacy and safety have not been empirically validated, hence this study. The in vivo antiinflamatory and antinociceptive efficacy of the aqueous and methanolic stem bark extracts of L. eriocalyx were determined using the xylene-induced ear oedema, and the acetic acid-induced writhing techniques, respectively, in experimental mice. Also, in vitro antioxidant activities of the studied plant extracts were investigated using the Thiobarbituric acid test for lipid peroxidation, 1, 1-diphenyl -2-picrylhydrazyl (DPPH), and Ferric reducing antioxidant power standard assay methods. Moreover, the studied extracts' acute oral toxicity effects were investigated according to the Organisation for Economic Corporation and Development (OECD) guidelines. The studied plant extracts showed significant dose-dependent inhibitions of oedema and writhing, depicting their anti-inflammatory and antinociceptive efficacy. Besides, the extracts revealed significant inhibitions of in vitro lipid peroxidation in varying degrees. Notably, the extracts demonstrated very strong DPPH radical scavenging and ferric-reducing antioxidant efficacies. Furthermore, the two studied plant extracts did not elicit acute oral toxicity, with LD50 values of >2000 mg/kg BW, hence were considered safe. The anti-inflammatory, antinociceptive, and in vitro antioxidant efficacies of these extracts were attributed to antioxidant phytocompounds with diverse pharmacologic effects, especially through the amelioration of oxidative stress. Further studies on the anti-inflammatory, antinociceptive and antioxidant mechanism(s) and isolation and characterisation of responsible compounds are encouraged to spur the development of affordable, accessible, safe, and efficacious drugs.

13.
Artículo en Inglés | MEDLINE | ID: mdl-33062006

RESUMEN

Oxidative stress is the result of the disparity between pro-oxidants and antioxidants in an organism, and it is important in the pathogenesis of several degenerative disorders, such as arthritis, Alzheimer's, cancer, and cardiovascular diseases. Free radicals can damage biomolecules, such as nucleic acids, lipids, proteins, polyunsaturated fatty acids, and carbohydrates, and the DNA leading to mutations. The use of antioxidants is effective in delaying the oxidation of biomolecules. Antioxidants are complexes found in the food that can retard or deter oxidation by preventing the initiation and propagation of oxidizing chain reactions. Medicinal plants have been used for centuries by man to manage diseases and have a host of antioxidant complexes. Traditionally, Caesalpinia volkensii, Vernonia lasiopus, and Acacia hockii have folkloric remedies against associated oxidative stress-mediated complications. However, the upsurge in its use has not been accompanied by scientific validations to support these claims. In this study, in vitro antioxidant activity of Caesalpinia volkensii, Vernonia lasiopus, and Acacia hockii collected from Embu County (Kenya) were determined by radical scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical in addition to ferric reducing antioxidant power analyzed against that of L-ascorbic acid as the standard. The obtained results revealed remarkable antioxidant activities of the studied plant extracts as evidenced by the low IC50 and EC50 values. These antioxidant activities could be due to the presence of antioxidants phytochemicals such as flavonoids, phenols, terpenoids, and saponins among others. Therefore, the therapeutic potential of this plant could be due to their antioxidant properties. This study recommends bioassay of the extracts against oxidative stress-related disorders for development of phytomedicine with antioxidant properties.

14.
ScientificWorldJournal ; 2020: 6378712, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694956

RESUMEN

Bacterial infections are responsible for a large number of deaths every year worldwide. On average, 80% of the African population cannot afford conventional drugs. Moreover, many synthetic antibiotics are associated with side effects and progressive increase in antimicrobial resistance. Currently, there is growing interest in discovering new antibacterial agents from ethnomedicinal plants. About 60% of the population living in developing countries depends on herbal drugs for healthcare needs. This study involved the screening of Centella asiatica commonly used by herbal medicine practitioners in Kisii County to treat symptoms related to bacterial infections. Standard bioassay methods were applied throughout the study. They included preliminary screening of dichloromethane: methanolic extract of Centella asiatica against human pathogenic bacteria including Salmonella typhi ATCC 19430, Escherichia coli ATCC 25922, Shigella sonnei ATCC 25931, Bacillus subtilis ATCC 21332, and Staphylococcus aureus ATCC 25923 using agar disc diffusion, broth microdilution method, and time-kill kinetics with tetracycline as a positive control. Phytochemical screening was carried out to determine the different classes of compounds in the crude extracts. Data were analyzed using one way ANOVA and means separated by Tukey's test. Dichloromethane: methanolic extract of Centella asiatica was screened against the selected bacterial strains. Time-kill kinetic studies of the extracts showed dose- and time-dependent kinetics of antibacterial properties. Phytochemical screening of the DCM-MeOH extract revealed the presence of alkaloids, flavonoids, phenolics, terpenoids, cardiac glycosides, saponins, steroids, and tannins. The present study indicates that the tested plant can be an important source of antibacterial agents and recommends that the active phytoconstituents be isolated, identified, and screened individually for activities and also subjected further for in vivo and toxicological studies.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Centella/química , Cloruro de Metileno/farmacología , Triterpenos/farmacología , Antibacterianos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Bacterias/clasificación , Infecciones Bacterianas/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Kenia , Metanol/química , Cloruro de Metileno/aislamiento & purificación , Pruebas de Sensibilidad Microbiana/métodos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Fitoterapia/métodos , Extractos Vegetales/farmacología , Salmonella typhi/efectos de los fármacos , Salmonella typhi/fisiología , Shigella sonnei/efectos de los fármacos , Shigella sonnei/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
15.
J Evid Based Integr Med ; 25: 2515690X20937988, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32664742

RESUMEN

Oxidative stress has been recognized as a key driver of many ailments affecting humankind. Free radicals attack biologically important biomolecules, impairing their functioning, thereby initiating and exacerbating diseases. As a comeback, antioxidant therapies have been proposed as novel approaches to ameliorating oxidative stress-associated diseases including chronic ones. Antioxidants are thought to employ multifaceted and multitargeted mechanisms that either restore oxidative homeostasis or prevent free radical buildup in the body, which overwhelm the endogenous defenses. Plants have been used for many ages across time to manage human diseases, and have a host of antioxidant phytocompounds. Piliostigma thonningii is traditionally used for the management of inflammation, malaria fever, rheumatism, and insanity, among other diseases caused by a disturbed redox state in the body. In this study, in vitro antioxidant activities of the methanolic and aqueous stem bark extracts of P. thonningii were evaluated using the in vitro antilipid peroxidation, the 1,1-diphenyl-2-picryhydrazyl (DPPH) free radical scavenging, and the ferric reducing antioxidant power assay methods. The obtained results revealed remarkable antioxidant activities of the studied plant extracts as evidenced by the low IC50 and EC50 values. These antioxidant activities could be due to the presence of antioxidant phytochemicals like flavonoids, carotenoids, tannins, and phenols, among others. Therefore, the therapeutic potency of this plant could be due to its antioxidant properties. This study recommends in vivo antioxidant efficacy testing of the studied plant extracts, as well as isolation and characterization of bioactive antioxidant compounds that are potent against oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Depuradores de Radicales Libres/farmacología , Humanos , Técnicas In Vitro , Kenia , Corteza de la Planta
16.
Int J Alzheimers Dis ; 2020: 1367075, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308992

RESUMEN

Cognitive impairment (CI) is among the leading causes of disability in humans. It is estimated that over 35.6 million people are suffering from Alzheimer's disease- (AD-) associated cognitive deficits globally with these statistics projected to rise over 115.4 million by the year 2050. There is no specific etiology for this cognitive impairment; however, various contributing factors including advancing age (>60 years old), oxidative stress, cerebral injuries, infections, neurologic disorders, and cancer have been implicated. Despite various attempts to manage CI, no curative medicines are yet available. The current drugs used to manage symptoms of AD-associated CI including Donepezil and Rivastigmine among others are only palliative rather than therapeutic. Furthermore, these agents have been associated with undesirable side effects. This calls for alternative and complementary approaches aimed at either preventing or reverting AD-related CI in a curative way without causing adverse events. It is estimated that over 80% of the world's population utilize herbal medicines for basic healthcare as it is considered safe, affordable, and easily accessible as opposed to conventional healthcare. Various parts of P. thonningii are used in traditional medicine to manage various conditions including CI. However, empirical and scientific data to validate these uses is lacking. In this study, the Morris water maze (MWM) experiment was adopted to evaluate the cognitive-enhancing effects of the studied plant extracts. The malondialdehyde (MDA) profiles in the brains of experimental mice were determined using the thiobarbituric acid reactive substances (TBARS) test. Moreover, qualitative phytochemical profiling of the studied plant extracts was performed using standard procedures. The results showed remarkable cognitive-enhancing activities which were reflected in significantly shorter transfer latencies, navigation distances, longer time spent in platform quadrant, and lower MDA levels compared with those recorded for the negative control mice (p < 0.05). Phytochemical screening of the studied plant extracts revealed the presence of antioxidant phytocompounds, which may have played key roles in the extracts' potency. Based on the findings herein, P. thonningii extracts, especially the aqueous ones have a promising potential for the management of AD-associated CI. Further studies aimed at isolating and characterizing specific active compounds for CI from P. thonningii are recommended. Additionally, specific mode(s) of action of active principles should be elucidated. Moreover, toxicity studies should be done on the studied plant extracts to ascertain their safety.

17.
Heliyon ; 5(11): e02800, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31844729

RESUMEN

BACKGROUND: Obesity is a chronic metabolic disorder characterized by increased adipose tissue mass due to positive energy balance. Prescription of anti-obesity drugs can be useful adjuncts to diet and exercise for obese patients who have failed to achieve weight loss. However, these drugs are ineffective and are associated with adverse effects. In recent times, medicinal plants have drawn a sharp focus owing to their biocompatibility and effectiveness. Attempts to determine the therapeutic effects and identification of bio-active principles from herbal prescriptions have become the prime focus in the validation of their folkloric usage and in drug discovery programs. Therefore, the present study aimed to determine the anti-obesity effects of Dichloromethane leaf extract of Gnidia glauca in high-fat-diet-induced obese rats. METHODS: Obesity was induced experimentally in white albino Wistar rats by feeding them with prepared high-fat-diet and water ad libitum for a period of 12 weeks. The in-vivo anti-obesity effects were determined by oral administration of Gnidia glauca at dosage levels of 200, 250 and 300 mg/kg body weight from the 6th to 12th week of study. Phytochemical analysis of Gnidia glauca was conducted using gas chromatography linked to mass spectrophotometer. RESULTS: The results indicated that Gnidia glauca exhibited potent anti-obesity effects. It significantly reduced the body weight, organ weights, organo-somatic indices, anthropometric indices, the total fat content, adiposity index, atherogenic index as well as various lipid profiles. It also decreased the total feed intake. However, it significantly increased levels of high-density lipoproteins and rectal body temperature of rats. Quantitative phytochemical analysis also revealed the presence of various phytocompounds that have shown to be associated with anti-obesity effects. CONCLUSION: The anti-obesity effects of Gnidia glauca maybe attributed to the phytochemicals present. The present study, therefore, scientifically validates the traditional use of Gnidia glauca as a potential candidate for the synthesis of new effective anti-obesity supplement.

18.
Heliyon ; 5(12): e02924, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31853510

RESUMEN

INTRODUCTION: Fever is managed using synthetic drugs such as aspirin, paracetamol among others. Synthetic drugs are associated with many side effects. Herbal medicines form alternative therapy since they possess fewer side effects and are readily available. This study aimed to determine antipyretic potential of DCM extracts of E. globulus and S. didymobotrya in Swiss albino rats. MATERIALS AND METHODS: The plant leaves samples were obtained from Embu County, Kenya. Dichloromethane solvent was used to extract bioactive constituents from the plant samples. Three grams of DCM leaf extracts of Eucalyptus globulus (Labill) and Senna didymobotrya (Fresenius) samples were obtained and analyzed to determine quantitative phytochemical composition at ICIPE laboratory using GC-MS. Albino rats were used in the antipyretic activity study. Nine groups of five experimental animals were used in each test: Positive control, normal control, negative control and experimental (25, 50, 100, 150, 200 and 250 mg/kg body weight extracts) groups. Pyrexia was induced by injection of turpentine in albino rats intraperitoneally. One hour later, the pyretic animals received the leaf extracts at various dose levels, reference drug (aspirin100 mg/kg body) or the vehicle (DMSO). RESULTS: Results of antipyretic in vivo bioscreening revealed that E. globulus and S. didymobotrya possess potent antipyretic activity which was comparable to that of the reference drug aspirin. Both extracts exhibited highest antipyretic activity at a dose of 250 mg/kg bw. Results of the GC-MS revealed that these plants possess bio-compounds such as Terpinolene, Alpha-pinene, Borneol, Globulol and Terpineols that are associated with antipyretic activity. CONCLUSIONS: In conclusion, this study revealed that these plants are endowed with bioactive compounds such as terpenoids, and flavonoids that possess antipyretic activity in rats.

19.
J Evid Based Integr Med ; 24: 2515690X19883258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31766874

RESUMEN

The acquisition of ethnobotanical information from traditional practitioners remains an empirical aspect of understanding the ethnopharmacology research. However, integration of information on chemical composition of plant extracts and their pharmacological activities forms a key resource for synthesis of new and effective therapeutics. In traditional African medicine, Gnidia glauca has folkloric remedies against obesity and its associated oxidative stress-mediated complications. However, the upsurge in its use has not been accompanied with scientific validations to support these claims. The present study aimed to determine the antioxidant potential of G glauca as a promising antiobesity agent. The antioxidant effects of the extract were assessed against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, hydrogen peroxide, nitric oxide, and superoxide radicals as well as lipid peroxidation, iron-chelating effect, and ferric-reducing power. Phytochemical analysis was conducted using gas chromatography linked to mass spectrophotometry. The results revealed that G glauca exhibited scavenging activities against all radicals formed. Besides, the extract showed iron chelation and ferric reducing abilities. The extract indicated a lower half maximal inhibitory concentration value than the standards used. For instance, the extract inhibited 50% of the formation of 2,2-diphenyl-1-picrylhydrazine at the concentration of 1.33 ± 0.03 mg/mL relative to 1.39 ± 0.06 mg/mL of the standard, vitamin C at 1% confidence limit. Similarly, the extract scavenged 50% of hydroxyl radical at 204.34 ± 10.64 µg/mL relative to 210.05 ± 8.80 µg/mL of gallic acid. The extract also contained various phytochemicals that have been associated with antiobesity effects. The synergistic effects of these phytocompounds increase their bioavailability and action on multiple molecular targets thereby correcting obesity-induced oxidative stress.


Asunto(s)
Fármacos Antiobesidad/análisis , Antioxidantes/análisis , Extractos Vegetales/análisis , Thymelaeaceae/química , Fármacos Antiobesidad/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Peroxidación de Lípido/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química
20.
Neural Plast ; 2019: 2867058, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565046

RESUMEN

Chronic exposures to high-fat diets are linked to neuropathological changes that culminate in obesity-related cognitive dysfunction and brain alteration. Learning, memory performance, and executive function are the main domains affected by an obesogenic diet. There are limited effective therapies for addressing cognitive deficits. Thus, it is important to identify additional and alternative therapies. In African traditional medicine, Gnidia glauca has putative efficacy in the management of obesity and associated complications. The use of Gnidia glauca is largely based on its long-term traditional use. Its therapeutic application has not been accompanied by sufficient scientific evaluation to validate its use. Therefore, the current study sought to explore the modulatory effects of dichloromethane leaf extracts of Gnidia glauca on cognitive function in the high-fat diet- (HFD-) induced obese rats. Obesity was induced by feeding the rats with prepared HFD and water ad libitum for 6 weeks. The in vivo antiobesity effects were determined by oral administration of G. glauca at dosage levels of 200, 250, and 300 mg/kg body weight in HFD-induced obese rats from the 6th to the 12th weeks. The Lee obesity index was used as a diagnostic criterion of obesity. The Morris water maze was employed to test spatial learning and memory retention in rats. The results indicated that Gnidia glauca showed potent antiobesity effects as indicated in the reduction of body weight and obesity index in extract-treated rats. Moreover, Gnidia glauca exhibited cognitive-enhancing effects in obese rats. The positive influences on cognitive functions might be attributed to the extracts' phytochemicals that have been suggested to confer protection against obesity-induced oxidative damage, reduction of central inflammation, and increased neurogenesis. The therapeutic effects observed suggest that Gnidia glauca might be an alternative to current medications for the symptomatic complications of obesity, such as learning and memory loss. Further studies are therefore needed to establish its toxicity profiles.


Asunto(s)
Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Obesidad/complicaciones , Animales , Peso Corporal/efectos de los fármacos , Trastornos del Conocimiento/etiología , Disfunción Cognitiva/complicaciones , Femenino , Memoria , Trastornos de la Memoria/etiología , Neurogénesis/efectos de los fármacos , Ratas Wistar , Aprendizaje Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...