Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37189841

RESUMEN

Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.

2.
Oncogene ; 41(40): 4498-4511, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36038661

RESUMEN

Prostate cancer (PCa) continues to threaten men's health, and treatment targeting the androgen receptor (AR) pathway is the major therapy for PCa patients. Several second-generation androgen receptor inhibitors (SG-ARIs), including enzalutamide (ENZ), apalutamide (APA) and darolutamide (DARO), have been developed to better block the activity of AR. Unavoidably, emergence of resistance to these novel drugs still persists. Herein, we identified glutathione S-transferase Mu 2 (GSTM2) as an important determinant in the acquisition of resistance to SG-ARIs. Elevated GSTM2 was detected in enzalutamide-resistant (ENZ-R) PCa, and overexpression of GSTM2 in naïve enzalutamide-sensitive (ENZ-S) cells effectively transformed them to ENZ-R PCa. Aryl hydrocarbon receptor (AhR), the upstream transcription factor, was implicated in the overexpression of GSTM2 in ENZ-R cells. Mechanistically, GSTM2 antagonized the effect of ENZ by rescuing cells from oxidative stress-associated damage and activation of p38 MAPK pathway. Surprisingly, high GSTM2 levels also associated with cross-resistance to APA and DARO. Taking together, these results provide new insight to ameliorate resistance to SG-ARIs and improve treatment outcome.


Asunto(s)
Antagonistas de Receptores Androgénicos , Resistencia a Antineoplásicos , Glutatión Transferasa , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Receptores Androgénicos/farmacología , Benzamidas , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Glutatión Transferasa/genética , Humanos , Masculino , Nitrilos/farmacología , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Hidrocarburo de Aril , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Chem Commun (Camb) ; 56(2): 237-240, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31803866

RESUMEN

Heavy metal ion contamination in water is a hazard to all life. The removal of such ions from aqueous media by porous metal-organic frameworks (MOFs) is a growing field. Herein we report the use of thiophene containing MOFs, notably DUT-67, for the removal of Pb2+ ions from water under both batch and flow conditions with a max loading of 98.5 mg Pb2+ per g MOF. Solution-phase 207Pb NMR spectroscopy and an observed decrease in adsorption with non-thiophene containing systems support a mechanism of adsorption via a putative 6π-η5-thiophene-Pb2+ coordination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...