Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169198

RESUMEN

Although charge-converting nanoparticles (NPs) potentially penetrate tumours deeply, conventional charge conversion strategies possess limitations, including low selectivity and slow, inconsistent conversion rate within the tumour microenvironment. In this study, we synthesized a zwitterionic near-infrared cyclodextrin derivative of heptamethine cyanine and complexed it with pheophorbide-conjugated ferrocene to produce multifunctional theranostic nanotherapeutics. Our NPs demonstrated enhanced tumour-targeting ability, enabling the highly specific imaging of rectal tumours, with tumour-to-rectum signal ratios reaching up to 7.8. The zwitterionic surface charge of the NPs was rapidly converted to a cationic charge within the tumours on 880 nm near-infrared laser irradiation, promoting the tumoural penetration of NPs via transcytosis. After penetration, photodynamic/chemodynamic therapy was initiated using a 660 nm laser. Our NPs eradicated clinically relevant-sized heterotopic tumours (~250 mm3) and orthotopic rectal tumours, displaying their potential as theranostic nanoplatforms for targeting rectal cancer.

2.
J Ginseng Res ; 48(4): 417-424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036737

RESUMEN

Background: This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker. Methods: A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by non-compartmental parameters after oral administration of the formulations. Results: PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (-28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group. Conclusion: The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.

3.
J Control Release ; 363: 525-535, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797889

RESUMEN

Bentonite (BT), an orally administrable natural clay, is widely used for medical and pharmaceutical purposes due to its unique properties, including swelling, adsorption and ion-exchange. However, its application as a matrix of amorphous solid dispersion (ASD) formulations is rarely reported, despite the fact that drugs can adsorb to BT in an amorphous state. The objective of this study was to explore the feasibility of BT as a water-insoluble ASD matrix for enhancing the oral bioavailability of poorly water-soluble drugs, including sorafenib (SF). We prepared a novel BT-based ASD of an SF-BT composite (SFBTC) by adsorbing SF onto BT under acidic conditions using the ionic interaction between cationic SF and negatively charged BT. Scanning electron microscopy (SEM), powder X-ray diffractometry (pXRD), and differential scanning calorimetry (DSC) analyses revealed that SF adsorbed to BT in an amorphous state at SF:BT ratios from 1:3 to 1:10. In pharmacokinetic studies in rats, SFBTC (1:3) significantly improved the oral bioavailability of SF, and the AUClast of SFBTC (1:3) was 3.3-fold higher than that of NEXAVAR®, a commercial product of SF. An in vitro release study under sink conditions revealed that SFBTC (1:3) completely released SF in a pH-dependent manner, while a nonsink condition study indicated the generation of supersaturation under intestinal pH conditions. A kinetic solubility study showed that the release of SFBTC (1:3) followed the diffusion-controlled mechanism, which is a typical characteristic of water-insoluble matrix-based ASDs. The pharmacokinetic studies of drug-BT composites of various drugs belonging to BCS class II indicated that the pKa value of the adsorbed drugs is one of the most important factors determining their dissolution and oral bioavailability. These results suggest that BT could be a promising water-insoluble ASD matrix for improving the oral bioavailability of poorly water-soluble drugs, including SF.


Asunto(s)
Bentonita , Agua , Ratas , Animales , Disponibilidad Biológica , Agua/química , Solubilidad , Composición de Medicamentos
4.
Nat Nanotechnol ; 18(8): 945-956, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37106052

RESUMEN

Although cyclodextrin-based renal-clearable nanocarriers have a high potential for clinical translation in targeted cancer therapy, their designs remain to be optimized for tumour retention. Here we report on the design of a tailored structure for renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery. Twenty cyclodextrin derivatives with different charged moieties and spacers are synthesized and screened for colloidal stability. The resulting five candidates are evaluated for biodistribution and an optimized structure is identified. The optimized cyclodextrin shows a high tumour accumulation and is used for delivery of doxorubicin and ulixertinib. Higher tumour accumulation and tumour penetration facilitates tumour elimination. The improved antitumour efficacy is demonstrated in heterotopic and orthotopic colorectal cancer models.


Asunto(s)
Neoplasias Colorrectales , Ciclodextrinas , Humanos , Distribución Tisular , Sistemas de Liberación de Medicamentos/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Portadores de Fármacos/química
5.
Mater Today Bio ; 19: 100591, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36873733

RESUMEN

Bone malignancy features a mineralized extracellular matrix primarily composed of hydroxyapatite, which interferes with the distribution and activity of antineoplastic agents. Herein, we report bone tumor-homing polymeric nanotherapeutics consisting of alendronate-decorated chondroitin sulfate A-graft-poly(lactide-co-glycolide) and doxorubicin (DOX), named PLCSA-AD, which displayed a prolonged retention profile in the tumor microenvironment and augmented therapeutic efficacy via inhibition of the mevalonate pathway. PLCSA-AD exhibited a 1.72-fold lower IC50 value than free DOX and a higher affinity for hydroxyapatite than PLCSA in HOS/MNNG cell-based 2D bone tumor-mimicking models. The inhibition of the mevalonate pathway by PLCSA-AD in tumor cells was verified by investigating the cytosolic fraction of unprenylated proteins, where blank PLCSA-AD significantly increased the expression of cytosolic Ras and RhoA without changing their total cellular amounts. In a bone tumor-mimicking xenografted mouse model, AD-decorated nanotherapeutics significantly increased tumor accumulation (1.73-fold) compared with PLCSA, and higher adsorption to hydroxyapatites was observed in the histological analysis of the tumor. As a result, inhibition of the mevalonate pathway and improvement in tumor accumulation led to markedly enhanced therapeutic efficacy in vivo, suggesting that PLCSA-AD could be promising nanotherapeutics for bone tumor treatment.

6.
Int J Nanomedicine ; 17: 6513-6525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36575696

RESUMEN

Purpose: Orobol is an isoflavone that has a potent skin protection effect. The objective of this study was to prepare a novel bentonite-based composite formulation of orobol to enhance topical skin delivery. Methods: The composition was optimized based on the orobol content in the composite and the in vitro release studies, followed by the in vitro and in vivo hairless mouse skin deposition studies. Physicochemical characterizations of the composite formulation were performed by powder X-ray refractometry (XRD) and scanning electron microscopy (SEM). The in vitro cytotoxicity and in vivo toxicity studies were conducted in human keratinocytes and in hairless mouse, respectively. Results and Discussions: The in vitro release of orobol from the bentonite composites was higher than that from the suspension, which was further increased with the addition of phosphatidylcholine. The composite formulation significantly enhanced the in vitro and in vivo skin deposition of orobol in hairless mouse skin compared to the orobol suspension. Moreover, the addition of phosphatidyl choline not only improved the dissolution and incomplete release of orobol from the bentonite composite but also enhanced the deposition of orobol in the skin. XRD histograms and SEM images confirmed that the enhanced dissolution of orobol from the composite was attributed to its amorphous state on bentonite. The in vitro and in vivo toxicity studies support the safety and biocompatibility of the orobol-loaded bentonite composite formulation. Conclusion: These findings suggest that the orobol-loaded bentonite composite formulation could be a potential topical skin delivery system for orobol.


Asunto(s)
Bentonita , Piel , Ratones , Animales , Humanos , Bentonita/química , Ratones Pelados , Flavonoides
7.
Pharmaceutics ; 13(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513991

RESUMEN

Hyaluronidase (HAase) inhibitor-incorporated hyaluronic acid (HA) hydrogel cross-linked with 1,4-butanediol diglycidyl ether (BDDE) was designed to reduce the toxicity risk induced by BDDE and its biodegradation rate in subcutaneous tissue. The formulation composition of hydrogel and its preparation method were optimized to have a high swelling ratio and drug content. Quercetin (QCT) and quetiapine (QTP), as an HAase inhibitor and model drug, respectively, were incorporated into the cross-linked hydrogel using the antisolvent precipitation method for extending their release after subcutaneous injection. The cross-linked HA (cHA)-based hydrogels displayed appropriate viscoelasticity and injectability for subcutaneous injection. The incorporation of QCT (as an HAase inhibitor) in the cHA hydrogel formulation resulted in slower in vitro and in vivo degradation profiles compared to the hydrogel without QCT. Single dosing of optimized hydrogel injected via a subcutaneous route in rats did not induce any acute toxicities in the blood chemistry and histological staining studies. In the pharmacokinetic study of rats following subcutaneous injection, the cHA hydrogel with QCT exhibited a lower maximum QTP concentration and longer half-life and mean residence time values compared to the hydrogel without QCT. All of these results support the designed HAase inhibitor-incorporated cHA hydrogel being a biocompatible subcutaneous injection formulation for sustained drug delivery.

8.
Pharmaceutics ; 12(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751591

RESUMEN

PEGylated Eudragit L100 (ELP)-containing proliponiosomes (PLNs) were developed for improved oral delivery of celecoxib (CXB). The successful introduction of PEG 2000 or 5000 to Eudragit L100 (EL) was confirmed via proton nuclear magnetic resonance analysis of which calculated molar substitution ratio of PEG to EL was 36.0 or 36.7, respectively. CXB, ELP, phospholipid, and non-ionic surfactants were dissolved in dimethyl sulfoxide and lyophilized to produce CXB-loaded PLNs (CXB@PLNs). The physical state of CXB@PLNs was evaluated using differential scanning calorimetry and powder X-ray diffractometry, which revealed that crystalline CXB was transformed into amorphous form after the fabrication procedure. The reconstitution of CXB@PLNs in aqueous media generated CXB-loaded liponiosomes with nano-sized mean diameters and spherical morphology. CXB@PLNs displayed enhanced dissolution rate and permeability compared to CXB suspension. In vivo pharmacokinetic studies performed on rats demonstrated the improved oral bioavailability of CXB@PLNs compared to that of CXB suspension. No serious systemic toxicity was observed in the blood biochemistry tests performed on rats. These results suggest that the developed PLNs could be promising oral delivery systems for improving the bioavailability of poorly water-soluble drugs, such as CXB.

9.
Molecules ; 25(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32294941

RESUMEN

Recently, potent neuroprotective and anti-diabetic effects of 7ß-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid isolated from Tussilago farfara Linnaeus, have been elucidated. To facilitate further pre-clinical evaluation in rats, an analytical method for the determination of ECN in rat plasma was developed and optimized by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma samples were pretreated by the protein precipitation method with an acetonitrile solution of losartan (LST) as the internal standard. Chromatographic separation was performed using a an Octadecyl-silica (ODS) column (2.6 µm, 100 x 4.6 mm) in the isocratic mode. The mobile phase, comprising 10 mM ammonium formate in water pH 5.75) and acetonitrile (11:89, v/v), was eluted at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed in the multiple reaction monitoring mode with positive electrospray ionization, and the mass transitions of ECN and LST were m/z 431.3 to 97.3 and m/z 423.1 to 207.2, respectively. The calibration curves of spiked plasma samples were linear in the 10.0-10,000 ng/mL range (r2 > 0.996). The lower limit of quantification (LLOQ) was determined as 10.0 ng/mL. Validation was conducted in the LLOQ, and three quality control (QC) sample levels (10.0, 25.0, 3750, and 7500 ng/mL) were studied. Among them, the relative standard deviation for the within- and between-run precisions was under 9.90%, and the relative error of the accuracies was within the -8.13% to 0.42% range. The validated method was successfully employed to investigate the pharmacokinetic properties of ECN in rats, which revealed the linear pharmacokinetic behavior of ECN for the first time.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/farmacocinética , Sesquiterpenos/farmacocinética , Espectrometría de Masas en Tándem/métodos , Acetonitrilos/química , Administración Oral , Animales , Calibración , Cromatografía Líquida de Alta Presión/instrumentación , Formiatos/química , Límite de Detección , Losartán/química , Masculino , Farmacocinética , Extractos Vegetales/sangre , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Control de Calidad , Ratas , Ratas Sprague-Dawley , Sesquiterpenos/administración & dosificación , Sesquiterpenos/sangre , Sesquiterpenos/química , Espectrometría de Masas en Tándem/instrumentación , Tussilago/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...