Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834778

RESUMEN

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Asunto(s)
Glioblastoma , Humanos , Línea Celular , Línea Celular Tumoral , Glioblastoma/metabolismo , Glucosa/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
2.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269915

RESUMEN

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.


Asunto(s)
Vesículas Extracelulares , Glioma , MicroARNs , Microscopía por Crioelectrón , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral
3.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801941

RESUMEN

Reticulocalbin 1 (RCN1) is an endoplasmic reticulum (ER)-residing protein, involved in promoting cell survival during pathophysiological conditions that lead to ER stress. However, the key upstream receptor tyrosine kinase that regulates RCN1 expression and its potential role in cell survival in the glioblastoma setting have not been determined. Here, we demonstrate that RCN1 expression significantly correlates with poor glioblastoma patient survival. We also demonstrate that glioblastoma cells with expression of EGFRvIII receptor also have high RCN1 expression. Over-expression of wildtype EGFR also correlated with high RCN1 expression, suggesting that EGFR and EGFRvIII regulate RCN1 expression. Importantly, cells that expressed EGFRvIII and subsequently showed high RCN1 expression displayed greater cell viability under ER stress compared to EGFRvIII negative glioblastoma cells. Consistently, we also demonstrated that RCN1 knockdown reduced cell viability and exogenous introduction of RCN1 enhanced cell viability following induction of ER stress. Mechanistically, we demonstrate that the EGFRvIII-RCN1-driven increase in cell survival is due to the inactivation of the ER stress markers ATF4 and ATF6, maintained expression of the anti-apoptotic protein Bcl-2 and reduced activity of caspase 3/7. Our current findings identify that EGFRvIII regulates RCN1 expression and that this novel association promotes cell survival in glioblastoma cells during ER stress.

4.
Sci Rep ; 10(1): 17768, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082482

RESUMEN

Despite aggressive treatment with temozolomide and radiotherapy and extensive research into alternative therapies there has been little improvement in Glioblastoma patient survival. Median survival time remains between 12 and 15 months mainly due to treatment resistance and tumor recurrence. In this study, we aimed to explore the underlying mechanisms behind treatment resistance and the lack of success with anti-EGFR therapy in the clinic. After generating a number of treatment resistant Glioblastoma cell lines we observed that resistant cell lines lacked EGFR activation and expression. Furthermore, cell viability assays showed resistant cells were significantly less sensitive to the anti-EGFR agents when compared to parental cell lines. To further characterise the resistance mechanism in our cells microRNA prediction software identified miR-221 as a negative regulator of EGFR expression. miR-221 was up-regulated in our resistant cell lines, and this up-regulation led to a significant reduction in EGFR expression in both our cultured cell lines and a large cohort of glioblastoma patient tumor tissue.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Quimioradioterapia/métodos , Glioblastoma/tratamiento farmacológico , MicroARNs/genética , Temozolomida/farmacología , Apoptosis , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Recurrencia Local de Neoplasia , Transducción de Señal
5.
Proteomics ; 19(23): e1800423, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31531940

RESUMEN

Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, a trophectoderm spheroid-based in vitro model mimicking the pre-implantation human embryo is used to recapitulate important functional aspects of blastocyst implantation. Functionally, human endometrial EVs, derived from hormonally treated cells synchronous with implantation, are readily internalized by trophectoderm cells, regulating adhesive and invasive capacity of human trophectoderm spheroids. To gain molecular insights into mechanisms underpinning endometrial EV-mediated enhancement of implantation, quantitative proteomics reveal critical alterations in trophectoderm cellular adhesion networks (cell adhesion molecule binding, cell-cell adhesion mediator activity, and cell adherens junctions) and metabolic and gene expression networks, and the soluble secretome from human trophectodermal spheroids. Importantly, transfer of endometrial EV cargo proteins to trophectoderm to mediate changes in trophectoderm function is demonstrated. This is highlighted by correlation among endometrial EVs, the trophectodermal proteome following EV uptake, and EV-mediated trophectodermal cellular proteome, important for implantation. This work provides an understanding into molecular mechanisms of endometrial EV-mediated regulation of human trophectoderm functions-fundamental in understanding human endometrium-embryo signaling during implantation.


Asunto(s)
Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo , Endometrio/metabolismo , Vesículas Extracelulares/metabolismo , Western Blotting , Adhesión Celular/fisiología , Microscopía por Crioelectrón , Células Epiteliales/metabolismo , Femenino , Humanos , Microscopía Electrónica de Transmisión , Proteoma/metabolismo
6.
Cancer Invest ; 37(3): 144-155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30907150

RESUMEN

Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Cianoacrilatos/uso terapéutico , Dinamina II/antagonistas & inhibidores , Glioma/tratamiento farmacológico , Indoles/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dinamina II/metabolismo , Glioma/metabolismo , Glioma/patología , Humanos , Terapia Molecular Dirigida/métodos , Células Madre Neoplásicas/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Oncol Lett ; 16(4): 4095-4104, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30250528

RESUMEN

Glioblastoma is the most common type of malignant brain tumor among adults and is currently a non-curable disease due primarily to its highly invasive phenotype, and the lack of successful current therapies. Despite surgical resection and post-surgical treatment patients ultimately develop recurrence of the tumour. Several signalling molecules have been implicated in the development, progression and aggressiveness of glioblastoma. The present study reviewed the role of interleukin (IL)-6, a cytokine known to be important in activating several pro-oncogenic signaling pathways in glioblastoma. The current study particularly focused on the contribution of IL-6 in recurrent glioblastoma, with particular focus on glioblastoma stem cells and resistance to therapy.

8.
Transl Oncol ; 11(6): 1406-1418, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30219696

RESUMEN

The most common primary central nervous system tumor in adults is the glioblastoma multiforme (GBM). The highly invasive nature of GBM cells is a significant factor resulting in the inevitable tumor recurrence and poor patient prognosis. Tumor cells utilize structures known as invadopodia to faciliate their invasive phenotype. In this study, utilizing an array of techniques, including gelatin matrix degradation assays, we show that GBM cell lines can form functional gelatin matrix degrading invadopodia and secrete matrix metalloproteinase 2 (MMP-2), a known invadopodia-associated matrix-degrading enzyme. Furthermore, these cellular activities were augmented in cells that survived radiotherapy and temozolomide treatment, indicating that surviving cells may possess a more invasive phenotype posttherapy. We performed a screen of FDA-approved agents not previously used for treating GBM patients with the aim of investigating their "anti-invadopodia" and cytotoxic effects in GBM cell lines and identified a number that reduced cell viability, as well as agents which also reduced invadopodia activity. Importantly, two of these, pacilitaxel and vinorelbine tartrate, reduced radiation/temozolomide-induced invadopodia activity. Our data demonstrate the value of testing previously approved drugs (repurposing) as potential adjuvant agents for the treatment of GBM patients to reduce invadopodia activity, inhibit GBM cell invasion, and potentially improve patient outcome.

9.
PLoS One ; 13(2): e0189452, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29444091

RESUMEN

Glioma is the most common malignant intracranial tumour. Recently, several publications have suggested that miRNAs can be used as potential diagnostic biomarkers of glioma. Here we performed a meta-analysis to identify the diagnostic accuracy of differentially expressed circulating miRNAs in gliomas. Using PubMed, Medline and Cochrane databases, we searched for studies which evaluated a single or panel of miRNAs from circulating blood as potential biomarkers of glioma. Sixteen publications involving 23 studies of miRNAs from serum or plasma met our criteria and were included in this meta-analysis. The pooled diagnostic parameters were calculated by random effect models and overall diagnostic performance of altered miRNAs was illustrated by the summary receiver operator characteristic (SROC) curves. The pooled sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) from each study were calculated. The pooled PLR, NLR and Diagnostic Odds Ratio were 6.39 (95% CI, 4.61-8.87), 0.15 (95% CI, 0.11-0.21) and 41.91 (95% CI, 23.15-75.88), respectively. The pooled sensitivity, specificity and area under the curve (AUC) were 0.87 (95% CI, 0.82-0.91), 0.86 (95% CI, 0.82-0.90) and 0.93 (95% CI, 0.91-0.95), respectively. This meta-analysis demonstrated that circulating miRNAs are capable of distinguishing glioma from healthy controls. Circulating miRNAs are promising diagnostic biomarkers for glioma and can potentially be used as a non-invasive early detection.


Asunto(s)
Biomarcadores/sangre , Neoplasias Encefálicas/sangre , Glioma/sangre , MicroARNs/sangre , Humanos
10.
Stem Cells Transl Med ; 7(2): 180-196, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29297621

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by chronic inflammation, severe scarring, and stem cell senescence. Stem cell-based therapies modulate inflammatory and fibrogenic pathways by release of soluble factors. Stem cell-derived extracellular vesicles should be explored as a potential therapy for IPF. Human amnion epithelial cell-derived exosomes (hAEC Exo) were isolated and compared against human lung fibroblasts exosomes. hAEC Exo were assessed as a potential therapy for lung fibrosis. Exosomes were isolated and evaluated for their protein and miRNA cargo. Direct effects of hAEC Exo on immune cell function, including macrophage polarization, phagocytosis, neutrophil myeloperoxidase activity and T cell proliferation and uptake, were measured. Their impact on immune response, histological outcomes, and bronchioalveolar stem cell (BASC) response was assessed in vivo following bleomycin challenge in young and aged mice. hAEC Exo carry protein cargo enriched for MAPK signaling pathways, apoptotic and developmental biology pathways and miRNA enriched for PI3K-Akt, Ras, Hippo, TGFß, and focal adhesion pathways. hAEC Exo polarized and increased macrophage phagocytosis, reduced neutrophil myeloperoxidases, and suppressed T cell proliferation directly. Intranasal instillation of 10 µg hAEC Exo 1 day following bleomycin challenge reduced lung inflammation, while treatment at day 7 improved tissue-to-airspace ratio and reduced fibrosis. Administration of hAEC Exo coincided with the proliferation of BASC. These effects were reproducible in bleomycin-challenged aged mice. The paracrine effects of hAECs can be largely attributed to their exosomes and exploitation of hAEC Exo as a therapy for IPF should be explored further. Stem Cells Translational Medicine 2018;7:180-196.


Asunto(s)
Amnios/citología , Células Epiteliales/citología , Exosomas/fisiología , Lesión Pulmonar/patología , Pulmón/patología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Fibroblastos/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Neumonía/patología , Embarazo , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología , Linfocitos T/fisiología
11.
Hum Reprod ; 32(11): 2254-2268, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040564

RESUMEN

STUDY QUESTION: Is there a specific surface marker that identifies human endometrial epithelial progenitor cells with adult stem cell activity using in vitro assays? SUMMARY ANSWER: N-cadherin isolates clonogenic, self-renewing human endometrial epithelial progenitor cells with high proliferative potential that differentiate into cytokeratin+ gland-like structures in vitro and identifies their location in some cells of gland profiles predominantly in basalis endometrium adjacent to the myometrium. WHAT IS KNOWN ALREADY: Human endometrium contains a small population of clonogenic, self-renewing epithelial cells with high proliferative potential that differentiate into large gland-like structures, but their identity and location is unknown. Stage-specific embryonic antigen-1 (SSEA-1) distinguishes the epithelium of basalis from functionalis and is a marker of human post-menopausal (Post-M) endometrial epithelium. STUDY DESIGN, SIZE, DURATION: Prospective observational study of endometrial epithelial cells obtained from hysterectomy samples taken from 50 pre-menopausal (Pre-M) and 24 Post-M women, of which 4 were from women who had taken daily estradiol valerate 2 mg/day for 8 weeks prior. PARTICIPANTS/MATERIALS, SETTING, METHODS: Gene profiling was used to identify differentially expressed surface markers between fresh EpCAM (Epithelial Cell Adhesion Molecule)-magnetic bead-selected basalis-like epithelial cells from Post-M endometrium compared with predominantly functionalis epithelial cells from Pre-M endometrium and validated by qRT-PCR. In vitro clonogenicity and self-renewal assays were used to assess the stem/progenitor cell properties of magnetic bead-sorted N-cadherin+ and N-cadherin- epithelial cells. The cellular identity, location and phenotype of N-cadherin+ cells was assessed by dual colour immunofluorescence and confocal microscopy for cytokeratin, proliferative status (Ki-67), ERα, SSEA-1, SOX9 and epithelial mesenchymal transition (EMT) markers on full thickness human endometrium. MAIN RESULTS AND THE ROLE OF CHANCE: CDH2 (N-cadherin gene) was one of 11 surface molecules highly expressed in Post-M compared to Pre-M endometrial epithelial cells. N-cadherin+ cells comprise a median 16.7% (n = 8) and 20.2% (n = 5) of Pre-M endometrial epithelial cells by flow cytometry and magnetic bead sorting, respectively. N-cadherin+ epithelial cells from Pre-M endometrium were more clonogenic than N-cadherin- cells (n = 12, P = 0.003), underwent more population doublings (n = 7), showed greater capacity for serial cloning (n = 7) and differentiated into cytokeratin+ gland-like organoids. N-cadherin immunolocalised to the lateral and apical membrane of epithelial cells in the bases of glands in the basalis of Pre-M endometrium and Post-M gland profiles, co-expressing cytokeratin, ERα but not SSEA-1 or SOX9, which localized on gland profiles proximal to N-cadherin+ cells. N-cadherin+ cells were quiescent (Ki-67-) in the basalis and in Post-M endometrial glands and co-localized with EMT markers vimentin and E-cadherin. LARGE SCALE DATA: The raw and processed data files from the gene microarray have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus data set with accession number GSE35221. LIMITATIONS, REASONS FOR CAUTION: This is a descriptive study in human endometrium only using in vitro stem cell assays. The differential ability of N-cadherin+ and N-cadherin-cells to generate endometrial glands in vivo was not determined. A small number of uterine tissues analysed contained adenomyosis for which N-cadherin has been implicated in epithelial-EMT. WIDER IMPLICATIONS OF THE FINDINGS: A new marker enriching for human endometrial epithelial progenitor cells identifies a different and potentially more primitive cell population than SSEA-1, suggesting a potential hierarchy of epithelial differentiation in the basalis. Using N-cadherin as a marker, the molecular and cellular characteristics of epithelial progenitor cells and their role in endometrial proliferative disorders including endometriosis, adenomyosis and thin dysfunctional endometrium can be investigated. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by Cancer Council Victoria grant 491079 (C.E.G.) and Australian National Health and Medical Research Council grants 1021127 (C.E.G.), 1085435 (C.E.G., J.A.D.), 145780 and 288713 (C.N.S.), RD Wright Career Development Award 465121 (C.E.G.), Senior Research Fellowship 1042298 (C.E.G.), the Victorian Government's Operational Infrastructure Support and an Australian Postgraduate Award (HPTN), and China Council Scholarship (L.X.). The authors have nothing to declare.


Asunto(s)
Cadherinas/metabolismo , Endometrio/metabolismo , Células Epiteliales/metabolismo , Células Madre/metabolismo , Adulto , Anciano , Endometrio/citología , Células Epiteliales/citología , Femenino , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Células Madre/citología , Enfermedades Uterinas/metabolismo
12.
Biol Reprod ; 95(5): 109, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27655784

RESUMEN

Extracellular vesicles (EVs), including exosomes (30-150 nm) and microvesicles (100-1500 nm), play important roles in mediating cell-cell communication. Such particles package distinct cargo elements, including lipids, proteins, mRNAs, microRNAs, and DNA, that vary depending on the cell of origin and its phenotype. This cargo can be horizontally transferred to target cells where its components can reprogram the recipient cell to modify its function. EVs have been identified within the uterine cavity of women, sheep, and mice, where they contribute to the microenvironment of sperm transport, and of blastocyst and endometrial preparation for implantation. It is likely that exosomes and microvesicles carry different cargo and coordinate different roles in this intrauterine environment. Understanding and defining these subtypes of EVs is important for future functional studies and clinical translation. Here we critically review the various purification and validation procedures for extracellular vesicle analysis and discuss what is known of endometrial-derived exosome cargo and of their hormonal regulation. The current knowledge of the functions of uterine exosomes, with respect to sperm transport and function, and of their actions on trophectodermal cells to promote implantation are summarized and evaluated in their physiological context. Given the potential importance of this form of cell-cell interactions within the reproductive tract, the critical issues discussed will guide new insights in this rapidly expanding field.


Asunto(s)
Implantación del Embrión/fisiología , Vesículas Extracelulares/metabolismo , Útero/metabolismo , Animales , Transporte Biológico , Endometrio/metabolismo , Exosomas/metabolismo , Femenino , Humanos
13.
J Proteomics ; 144: 99-112, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27262222

RESUMEN

UNLABELLED: Dialogue between an appropriately developed embryo and hormonally-primed endometrium is essential to achieve implantation and establish pregnancy. Importantly, the point-of-first-contact between the embryo and the maternal endometrium occurs at the endometrial luminal epithelium (LE). Implantation events occur within the uterine cavity microenvironment regulated by local factors. Defects in embryo-endometrial communication likely underlie unexplained infertility; enhanced knowledge of this communication, specifically at initial maternal-fetal contact may reveal targets to improve fertility. Using a human endometrial luminal-epithelial (LE) cell line (ECC1), this targeted proteomic study reveals unique protein changes in both cellular (98% unique identifications) and secreted (96% unique identifications) proteins in the transition to the progesterone-dominated secretory (receptive) phase and subsequently to pregnancy, mediated by embryo-derived human chorionic gonadotropin (hCG). This analysis identified 157 progesterone-regulated cellular proteins, with further 193 significantly altered in response to hCG. Cellular changes were associated with metabolism, basement membrane and cell connectivity, proliferation and differentiation. Secretome analysis identified 1059 proteins; 123 significantly altered by progesterone, and 43 proteins altered by hCG, including proteins associated with cellular adhesion, extracellular-matrix organization, developmental growth, growth factor regulation, and cell signaling. Collectively, our findings reveal dynamic intracellular and secreted protein changes in the endometrium that may modulate successful establishment of pregnancy. BIOLOGICAL SIGNIFICANCE: This study provides unique insights into the developmental biology of embryo implantation using targeted proteomics by identifying endometrial epithelial cellular and secreted protein changes in response to ovarian steroid hormones and pregnancy hormones that are essential for receptivity and implantation.


Asunto(s)
Endometrio/citología , Células Epiteliales/efectos de los fármacos , Hormonas Esteroides Gonadales/fisiología , Ovario/fisiología , Proteínas Gestacionales/efectos de los fármacos , Proteoma/efectos de los fármacos , Línea Celular , Gonadotropina Coriónica/farmacología , Implantación del Embrión/efectos de los fármacos , Embrión de Mamíferos , Desarrollo Embrionario , Células Epiteliales/química , Células Epiteliales/metabolismo , Femenino , Humanos , Embarazo , Proteínas Gestacionales/análisis , Proteínas Gestacionales/metabolismo , Proteínas Gestacionales/fisiología , Progesterona/farmacología , Proteoma/análisis , Proteoma/metabolismo
14.
Biol Reprod ; 94(2): 38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26764347

RESUMEN

Embryo implantation into receptive endometrium requires synergistic endometrial-blastocyst interactions within the uterine cavity and is essential for establishing pregnancy. We demonstrate that exosomes (40-150 nm nanovesicles) released from endometrial epithelial cells are an important component of these interactions. We defined the proteome of purified endometrial epithelial-derived exosomes (Exos) influenced by menstrual cycle hormones estrogen (E; proliferative phase) and estrogen plus progesterone (EP; receptive phase) and examined their potential to modify trophoblast function. E-/EP-Exos were uniquely enriched with 254 and 126 proteins, respectively, with 35% newly identified proteins not previously reported in exosome databases. Importantly, EP-Exos protein cargo was related to fundamental changes in implantation: adhesion, migration, invasion, and extracellular matrix remodeling. These findings from hormonally treated ECC1 endometrial cancer cells were validated in human primary uterine epithelial cell-derived exosomes. Functionally, exosomes were internalized by human trophoblast cells and enhanced their adhesive capacity, a response mediated partially through active focal adhesion kinase (FAK) signaling. Thus, exosomes contribute to the endometrial-embryo interactions within the human uterine microenvironment essential for successful implantation.


Asunto(s)
Embrión de Mamíferos/metabolismo , Endometrio/metabolismo , Exosomas/metabolismo , Relaciones Materno-Fetales/fisiología , Trofoblastos/metabolismo , Implantación del Embrión/fisiología , Femenino , Humanos , Embarazo
15.
Am J Reprod Immunol ; 75(3): 218-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26661899

RESUMEN

Successful implantation requires synchronous development of embryo and endometrium. Endometrial receptivity results from progesterone-induced differentiation of endometrial cells, generally achieved during the mid-secretory phase of the cycle. Failure to properly develop receptivity results in failed or inadequate implantation and hence no ongoing pregnancy. The blastocyst undergoes final development, apposition, attachment and initiates invasion of the endometrial epithelium within the uterine cavity. Thus, the microenvironment provided by uterine fluid, particularly glandular secretions, is essential for implantation. Analysis of endometrial fluid has identified cytokines, chemokines, proteases, antiproteases and other factors that modulate blastocyst functions relevant to implantation. Exosomes/microvesicular bodies released from the endometrium (and likely also the embryo) are present in uterine fluid. These can transfer miRNA, proteins and lipids between cells, thus providing endometrial-embryo communication in the peri-implantation period. Understanding the uterine microenvironment, and its effects on endometrial-embryo interactions, will provide opportunities to modify current infertility treatments to improve success rates.


Asunto(s)
Microambiente Celular/inmunología , Citocinas/inmunología , Implantación del Embrión/inmunología , Embrión de Mamíferos/inmunología , Endometrio/inmunología , Embarazo/inmunología , Animales , Comunicación Celular/inmunología , Ciclo Celular/inmunología , Femenino , Humanos
16.
Science ; 339(6123): 1088-92, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23449591

RESUMEN

The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-ε as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-ε was not induced by known PRR pathways; instead, IFN-ε was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-ε-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-ε is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia muridarum , Herpes Genital/inmunología , Herpesvirus Humano 2 , Interferones/inmunología , Receptores Toll-Like/inmunología , Vagina/inmunología , Animales , Línea Celular , Infecciones por Chlamydia/genética , Estrógenos/administración & dosificación , Estrógenos/inmunología , Femenino , Células HEK293 , Herpes Genital/genética , Humanos , Interferones/genética , Ligandos , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/inmunología , Poli I-C/inmunología , Poli dA-dT/inmunología , Útero/inmunología , Vagina/microbiología , Vagina/virología
17.
Rev Endocr Metab Disord ; 13(4): 235-51, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22847235

RESUMEN

The functional layer of the human endometrium is a highly regenerative tissue undergoing monthly cycles of growth, differentiation and shedding during a woman's reproductive years. Fluctuating levels of circulating estrogen and progesterone orchestrate this dramatic remodeling of human endometrium. The thin inactive endometrium of postmenopausal women which resembles the permanent basal layer of cycling endometrium retains the capacity to respond to exogenous sex steroid hormones to regenerate into a thick functional endometrium capable of supporting pregnancy. Endometrial regeneration also follows parturition and endometrial resection. In non menstruating rodents, endometrial epithelium undergoes rounds of proliferation and apoptosis during estrus cycles. The recent identification of adult stem cells in both human and mouse endometrium suggests that epithelial progenitor cells and the mesenchymal stem/stromal cells have key roles in the cyclical regeneration of endometrial epithelium and stroma. This review will summarize the evidence for endometrial stem/progenitor cells, examine their role in mouse models of endometrial epithelial repair and estrogen-induced endometrial regeneration, and also describe the generation of endometrial-like epithelium from human embryonic stem cells. With markers now available for identifying endometrial mesenchymal stem/stromal cells, their possible role in gynecological diseases associated with abnormal endometrial proliferation and their potential application in cell-based therapies to regenerate reproductive and other tissues will be discussed.


Asunto(s)
Endometrio/fisiología , Regeneración , Células Madre/citología , Animales , Femenino , Humanos , Trasplante de Células Madre , Enfermedades Uterinas/terapia
18.
Endocrinology ; 153(6): 2870-83, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22474188

RESUMEN

The human endometrium undergoes extensive monthly regeneration in response to fluctuating levels of circulating estrogen and progesterone in premenopausal (Pre-M) women. In contrast, postmenopausal (Post-M) endometrium is thin and quiescent with low mitotic activity, similar to the Pre-M endometrial basalis layer. Clonogenic epithelial stem/progenitor (ESP) cells, likely responsible for regenerating endometrial epithelium, have been identified in Pre-M and Post-M endometrium, but their location is unknown. We undertook transcriptional profiling of highly purified epithelial cells from full-thickness Pre-M and Post-M endometrium to identify differentially regulated genes that may indicate a putative ESP cell population resides in the basalis of Pre-M and basalis-like Post-M endometrium. Of 1077 differentially expressed genes identified, the Wnt signaling pathway, important in endometrial development and stem cell regulation, was one of the main gene families detected, including 22 Wnt-associated genes. Twelve genes were validated using quantitative RT-PCR, and all were concordant with microarray data. Immunostaining showed glandular epithelial location of Wnt-regulated genes, Axin-related protein 2 and ß-catenin. Axin2 localized to the nucleus of basalis Pre-M and Post-M and cytoplasm of functionalis Pre-M endometrium, suggesting that it regulates ß-catenin. Comparison of our Post-M gene profile with published gene microarray datasets revealed similarities to Pre-M basalis epithelial profiles. This differential expression of multiple Wnt-associated genes in human Pre-M and Post-M endometrial epithelial cells and the similar gene profile of Post-M and Pre-M basalis epithelium suggests that a population of putative endometrial ESP may reside in the basalis of Pre-M endometrium, which may be responsible for regenerating glandular epithelium each month.


Asunto(s)
Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Células Madre/metabolismo , Vía de Señalización Wnt/genética , Adulto , Anciano , Proteína Axina/genética , Proteína Axina/metabolismo , Células Cultivadas , Endometrio/citología , Endometrio/metabolismo , Epitelio/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Redes Reguladoras de Genes , Humanos , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Posmenopausia/genética , Posmenopausia/metabolismo , Premenopausia/genética , Premenopausia/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta Catenina/genética , beta Catenina/metabolismo
19.
Biol Reprod ; 80(6): 1136-45, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19228591

RESUMEN

Human endometrium is a highly regenerative tissue undergoing more than 400 cycles of growth, differentiation, and shedding during a woman's reproductive years. Endometrial regeneration is likely mediated by adult stem/progenitor cells. This study investigated key stem cell properties of individual clonogenic epithelial and stromal cells obtained from human endometrium. Single-cell suspensions of endometrial epithelial or stromal cells were obtained from hysterectomy tissues from 15 women experiencing normal menstrual cycles, and were cultured at clonal density (10 cells/cm(2)) or limiting dilution. The adult stem cell properties-self-renewal, high proliferative potential, and differentiation of single epithelial and stromal cells-were assessed by harvesting individual colonies and undertaking serial clonal culture, serial passaging, and culture in differentiation-induction media, respectively. Lineage differentiation markers were examined by RT-PCR, immunocytochemistry, and flow cytometry. Rare single human endometrial EpCAM(+) epithelial cells and EpCAM(-) stromal cells demonstrated self-renewal by serially cloning >3 times and underwent >30 population doublings over 4 mo in culture. Clonally derived epithelial cells differentiated into cytokeratin(+) gland-like structures in three dimensional culture. Single stromal cells were multipotent, as their progeny differentiated into smooth muscle cells, adipocytes, chondrocytes, and osteoblasts. Stromal clones expressed mesenchymal stem cell (MSC) markers ITGB1 (CD29), CD44, NT5E (CD73), THY1 (CD90), ENG (CD105), PDGFRB (CD140B), MCAM (CD146) but not endothelial or hemopoietic markers PECAM1 (CD31), CD34, PTPRC (CD45). Adult human endometrium contains rare epithelial progenitors and MSCs, likely responsible for its immense regenerative capacity, which may also have critical roles in the development of endometriosis and endometrial cancer. Human endometrium may provide a readily available source of MSCs for cell-based therapies.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular , Proliferación Celular , Endometrio/citología , Células Madre Mesenquimatosas/fisiología , Adulto , Células Madre Adultas/citología , Células Clonales , Células Epiteliales/citología , Femenino , Humanos , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...