Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 325(1): F73-F86, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37227224

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is characterized by obesity, hypertension, diabetes mellitus, and chronic kidney disease. Obese ZSF1 rats, a model of HFpEF, exhibit multiple such comorbidities that can disturb cardiac function. Little attention has been paid to how these comorbidities affect renal disease in ZSF1 rats. HFpEF is found predominantly in women in whom obesity and hypertension are particularly prevalent. Therefore, we characterized the renal phenotype in female and male lean and obese ZSF1 rats and investigated additional effects of worsened hypertension on disease severity. Systolic blood pressure and renal function were assessed biweekly from 12 to 26 wk. From 19 wk, rats were implanted with either a deoxycorticosterone acetate pellet and fed a high-salt diet (DS) or a placebo pellet and fed a normal-salt diet. At 26 wk of age, terminal glomerular filtration rate was assessed via inulin clearance under isoflurane. Renal sections were processed for histological analysis. Lean and obese ZSF1 rats, both female and male, were mildly hypertensive (systolic blood pressure: 140-150 mmHg). All obese ZSF1 rats showed HFpEF. In female normoglycemic ZSF1 rats, obesity associated with mild proteinuria, decreased glomerular filtration rate, and glomerular hypertrophy. DS-worsened hypertension enhanced proteinuria and triggered glomerulosclerosis. Male obese ZSF1 rats were hyperglycemic and showed proteinuria, glomerular hypertrophy and sclerosis, and tubulointerstitial damage. DS-worsened hypertension aggravated this phenotype in male ZSF1 rats. In conclusion, female obese ZSF1 rats develop mild renal dysfunction and DS-worsened hypertension compromises renal function and structure in normoglycemic female obese ZSF1 rats as in hyperglycemic male obese ZSF1 rats.NEW & NOTEWORTHY Chronic kidney disease coexists with heart failure with a preserved ejection fraction (HFpEF), which is associated with multiple comorbidities and the female sex. We showed that obese, mildly hypertensive female ZSF1 rats, an animal model for HFpEF, simultaneously develop renal disease with diastolic dysfunction. Exacerbation of their hypertension, a comorbidity highly prevalent in HFpEF, compromised renal function and structure similarly in normoglycemic obese female ZSF1 rats and hyperglycemic obese male ZSF1 rats.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Insuficiencia Renal Crónica , Ratas , Femenino , Masculino , Animales , Volumen Sistólico/fisiología , Riñón/fisiología , Obesidad/complicaciones , Hipertensión/complicaciones , Proteinuria , Hipertrofia , Modelos Animales de Enfermedad
2.
Front Pharmacol ; 12: 650968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935760

RESUMEN

Hypertension contributes to cardiac damage and remodeling. Despite the availability of renin-angiotensin system inhibitors and other antihypertensive therapies, some patients still develop heart failure. Novel therapeutic approaches are required that are effective and without major adverse effects. Sodium Thiosulfate (STS), a reversible oxidation product of hydrogen sulfide (H2S), is a promising pharmacological entity with vasodilator and anti-oxidant potential that is clinically approved for the treatment of calciphylaxis and cyanide poisoning. We hypothesized that Sodium Thiosulfate improves cardiac disease in an experimental hypertension model and sought to investigate its cardioprotective effects by direct comparison to the ACE-inhibitor lisinopril, alone and in combination, using a rat model of chronic nitric oxide (NO) deficiency. Systemic nitric oxide production was inhibited in Sprague Dawley rats by administering N-ω-nitro-l-arginine (L-NNA) with the food for three weeks, leading to progressive hypertension, cardiac dysfunction and remodeling. We observed that STS, orally administered via the drinking water, ameliorated L-NNA-induced heart disease. Treatment with STS for two weeks ameliorated hypertension and improved systolic function, left ventricular hypertrophy, cardiac fibrosis and oxidative stress, without causing metabolic acidosis as is sometimes observed following parenteral administration of this drug. STS and lisinopril had similar protective effects that were not additive when combined. Our findings indicate that oral intervention with a H2S donor such as STS has cardioprotective properties without noticeable side effects.

3.
Antioxidants (Basel) ; 10(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801446

RESUMEN

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.

4.
Am J Physiol Renal Physiol ; 320(3): F518-F524, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522412

RESUMEN

Monitoring renal function is a vital part of kidney research involving rats. The laborious measurement of glomerular filtration rate (GFR) with administration of exogenous filtration markers does not easily allow serial measurements. Using an in-house database of inulin clearances, we developed and validated a plasma creatinine- and plasma urea-based equation to estimate GFR in a large cohort of male rats [development cohort n = 325, R2 = 0.816, percentage of predictions that fell within 30% of the true value (P30) = 76%] that had high accuracy in the validation cohort (n = 116 rats, R2 = 0.935, P30 = 79%). The equation was less accurate in rats with nonsteady-state creatinine, in which the equation should therefore not be used. In conclusion, applying this equation facilitates easy and repeatable estimates of GFR in rats.NEW & NOTEWORTHY This is the first equation, that we know of, which estimates glomerular filtration rate in rats based on a single measurement of body weight, plasma creatinine, and plasma urea.


Asunto(s)
Adamantano/análogos & derivados , Creatinina/sangre , Dipéptidos/farmacología , Tasa de Filtración Glomerular/efectos de los fármacos , Plasma , Urea , Adamantano/farmacología , Angiotensina II/farmacología , Animales , Riñón/metabolismo , Pruebas de Función Renal , Masculino , Plasma/metabolismo , Ratas , Urea/metabolismo
6.
Kidney Int ; 98(2): 366-377, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32605800

RESUMEN

Sodium thiosulfate, a reversible oxidation product of hydrogen sulfide, has vasodilating and anti-oxidative properties, making it an attractive agent to alleviate damaging effects of hypertension. In experimental settings, inhibition of nitric oxide synthase causes hypertension, renal dysfunction and damage. We hypothesized that thiosulfate would attenuate renal injury and improve renal function, hemodynamics and the efficiency of oxygen utilization for sodium reabsorption in hypertensive renal disease. Additionally, thiosulfate co-administration would further improve these variables when compared to inhibiting the renin-angiotensin system alone. Nitric oxide synthase was inhibited in Sprague Dawley rats by administering N-ω-nitro-L-arginine (L-NNA) in the food for three weeks. After one week, rats were split into two groups; without and with thiosulfate in the drinking water. In a parallel study, rats given N-ω-nitro-L-arginine and the angiotensin converting enzyme inhibitor lisinopril at a relatively low dose in their food were divided into two groups; without and with thiosulfate in the drinking water. Treatment with thiosulfate alleviated hypertension (mean 190 vs. 229 mmHg), lowered plasma urea (mean 11.3 vs. 20.0 mmol/L) and improved the terminal glomerular filtration rate (mean 503 vs. 260 µl/min/100 gbw), effective renal plasma flow (mean 919 vs. 514 µl/min/100 gbw) and oxygen utilization for sodium reabsorption (mean 14.3 vs. 8.6 µmol/µmol). Combining thiosulfate with lisinopril further lowered renal vascular resistance (mean 43 vs. 63 mmHg/ml/min/100 gbw) and prevented glomerulosclerosis. Thus, our results suggest that thiosulfate has therapeutic potential in hypertensive renal disease and might be of value when added to standard antihypertensive therapies.


Asunto(s)
Hipertensión , Tiosulfatos , Animales , Presión Sanguínea , Inhibidores Enzimáticos/farmacología , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Riñón , NG-Nitroarginina Metil Éster , Óxido Nítrico , Nitroarginina , Ratas , Ratas Sprague-Dawley , Tiosulfatos/farmacología
7.
PLoS One ; 15(5): e0232399, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374790

RESUMEN

Heart failure with a preserved ejection fraction (HFpEF) is associated with multiple comorbidities, such as old age, hypertension, type 2 diabetes and obesity and is more prevalent in females. Although the male obese ZSF1 rat has been proposed as a suitable model to study the development of diastolic dysfunction and early HFpEF, studies in female animals have not been performed yet. Therefore, we aimed to characterize the cardiac phenotype in female obese ZSF1 rats and their lean counterparts. Additionally, we aimed to investigate whether differences exist in disease progression in obese male and female ZSF1 rats. Therefore, male and female ZSF1 rats, lean as well as obese (N = 6-9/subgroup), were used. Every two weeks, from 12 to 26 weeks of age, systolic blood pressure and echocardiographic measurements were performed, and venous blood was sampled. Female obese ZSF1 rats, as compared to female lean ZSF1 rats, developed diastolic dysfunction with cardiac hypertrophy and fibrosis in the presence of severe dyslipidemia, increased plasma growth differentiation factor 15 and mild hypertension, and preservation of systolic function. Although obese female ZSF1 rats did not develop hyperglycemia, their diastolic dysfunction was as severe as in the obese males. Taken together, the results from the present study suggest that the female obese ZSF1 rat is a relevant animal model for HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions.


Asunto(s)
Insuficiencia Cardíaca/etiología , Obesidad/complicaciones , Animales , Presión Sanguínea/fisiología , Colágeno/metabolismo , Diástole/fisiología , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Masculino , Síndrome Metabólico/complicaciones , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Endogámicas SHR , Ratas Zucker , Caracteres Sexuales , Volumen Sistólico/fisiología , Delgadez/fisiopatología , Remodelación Ventricular/fisiología
8.
Basic Res Cardiol ; 115(2): 21, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32100119

RESUMEN

Comorbidities of ischemic heart disease, including diabetes mellitus (DM), hypercholesterolemia (HC) and chronic kidney disease (CKD), are associated with coronary microvascular dysfunction (CMD). Increasing evidence suggests that CMD may contribute to myocardial 'Ischemia and No Obstructive Coronary Artery disease' (INOCA). In the present study, we tested the hypothesis that CMD results in perturbations in myocardial perfusion and oxygen delivery using a novel swine model with multiple comorbidities. DM (streptozotocin), HC (high-fat diet) and CKD (renal embolization) were induced in 10 female swine (DM + HC + CKD), while 12 healthy female swine on a normal diet served as controls (Normal). After 5 months, at a time when coronary atherosclerosis was still negligible, myocardial perfusion, metabolism, and function were studied at rest and during treadmill exercise. DM + HC + CKD animals showed hyperglycemia, hypercholesterolemia, and impaired kidney function. During exercise, DM + HC + CKD swine demonstrated perturbations in myocardial blood flow and oxygen delivery, necessitating a higher myocardial oxygen extraction-achieved despite reduced capillary density-resulting in lower coronary venous oxygen levels. Moreover, myocardial efficiency was lower, requiring higher oxygen consumption for a given level of myocardial work. These perturbations in myocardial oxygen balance were associated with lower myocardial lactate consumption, stroke volume, and LVdP/dtmax, suggestive of myocardial ischemia and dysfunction. Further analyses showed a reduction in adenosine-recruitable coronary flow reserve, but this was exclusively the result of an increase in basal coronary blood flow, while maximal coronary flow per gram of myocardium was maintained; the latter was consistent with the unchanged arteriolar wall/lumen ratio, arteriolar density and peri-arteriolar collagen content. However, isolated small arteries displayed selective blunting of endothelium-dependent vasodilation in response to bradykinin in DM + HC + CKD swine, suggesting that changes in coronary microvascular function rather than in structure contributed to the perturbations in myocardial oxygen delivery. In conclusion, common comorbidities in swine result in CMD, in the absence of appreciable atherosclerosis, which is severe enough to produce perturbations in myocardial oxygen balance, particularly during exercise, resembling key features of INOCA.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Hipercolesterolemia/sangre , Isquemia Miocárdica/sangre , Miocardio/metabolismo , Consumo de Oxígeno , Oxígeno/sangre , Insuficiencia Renal Crónica/sangre , Animales , Biomarcadores/sangre , Comorbilidad , Circulación Coronaria , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Modelos Animales de Enfermedad , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Hemodinámica , Hipercolesterolemia/complicaciones , Hipercolesterolemia/fisiopatología , Isquemia Miocárdica/etiología , Isquemia Miocárdica/fisiopatología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Sus scrofa , Función Ventricular Izquierda
9.
J Cell Mol Med ; 23(10): 6666-6678, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31368189

RESUMEN

Obesity and hypertension are prevalent comorbidities in heart failure with preserved ejection fraction. To clarify if and how interaction between these comorbidities contributes to development of diastolic dysfunction, lean and obese ZSF1 rats were treated with deoxycorticosterone acetate implants and a high-salt diet (DS) to induce severe hypertension, or with placebo. In addition to echocardiographic, metabolic and hemodynamic analyses, immunohistochemistry and RNAseq were performed on left ventricular tissue. Obesity negatively affected cardiac output, led to an elevated E/e' ratio and mildly reduced ejection fraction. DS-induced hypertension did not affect cardiac output and minimally elevated E/e' ratio. Diastolic derangements in placebo-treated obese rats developed in absence of inflammation and fibrosis, yet in presence of oxidative stress and hypertrophic remodelling. In contrast, hypertension triggered apoptosis, inflammation and fibrosis, with limited synergy of the comorbidities observed for inflammation and fibrosis. Transcriptional data suggested that these comorbidities exerted opposite effects on mitochondrial function. In placebo-treated obese rats, genes involved in fatty acid metabolism were up-regulated, whereas DS-induced a down-regulation of genes involved in oxidative phosphorylation. Overall, limited interaction was observed between these comorbidities in development of diastolic dysfunction. Importantly, differences in obesity- and hypertension-induced cardiac remodelling emphasize the necessity for comorbidity-specific phenotypical characterization.


Asunto(s)
Insuficiencia Cardíaca/etiología , Hipertensión/complicaciones , Obesidad/complicaciones , Disfunción Ventricular Izquierda/etiología , Animales , Apoptosis/genética , Capilares/crecimiento & desarrollo , Acetato de Desoxicorticosterona , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Fibrosis/fisiopatología , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , RNA-Seq , Ratas , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Factores de Riesgo , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
10.
Cardiovasc Res ; 114(7): 954-964, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29432575

RESUMEN

Aims: More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results: DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions: The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction.


Asunto(s)
Enfermedad de la Arteria Coronaria/etiología , Circulación Coronaria , Vasos Coronarios/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Hipercolesterolemia/complicaciones , Hipertensión Renovascular/complicaciones , Microcirculación , Miocardio/metabolismo , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Animales , Comorbilidad , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diástole , Femenino , Fibrosis , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatología , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/fisiopatología , Miocardio/patología , Estrés Oxidativo , Factores de Riesgo , Volumen Sistólico , Sus scrofa , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA