Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS J ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36636866

RESUMEN

The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.

2.
Mol Cell ; 83(1): 105-120.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36538933

RESUMEN

The versatility of ubiquitination to control vast domains of eukaryotic biology is due, in part, to diversification through differently linked poly-ubiquitin chains. Deciphering signaling roles for some chain types, including those linked via K6, has been stymied by a lack of specificity among the implicated regulatory proteins. Forged through strong evolutionary pressures, pathogenic bacteria have evolved intricate mechanisms to regulate host ubiquitin during infection. Herein, we identify and characterize a deubiquitinase domain of the secreted effector LotA from Legionella pneumophila that specifically regulates K6-linked poly-ubiquitin. We demonstrate the utility of LotA for studying K6 poly-ubiquitin signals. We identify the structural basis of LotA activation and poly-ubiquitin specificity and describe an essential "adaptive" ubiquitin-binding domain. Without LotA activity during infection, the Legionella-containing vacuole becomes decorated with K6 poly-ubiquitin as well as the AAA ATPase VCP/p97/Cdc48. We propose that LotA's deubiquitinase activity guards Legionella-containing vacuole components from ubiquitin-dependent extraction.


Asunto(s)
Legionella pneumophila , Ubiquitina , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Poliubiquitina/genética , Poliubiquitina/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Front Immunol ; 13: 965634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248884

RESUMEN

Axial spondyloarthritis (axSpA) is an inflammatory arthritis involving the spine and the sacroiliac joint with extra-articular manifestations in the eye, gut, and skin. The intestinal microbiota has been implicated as a central environmental component in the pathogenesis of various types of spondyloarthritis including axSpA. Additionally, alterations in the oral microbiota have been shown in various rheumatological conditions, such as rheumatoid arthritis (RA). Therefore, the aim of this study was to investigate whether axSpA patients have an altered immunoglobulin A (IgA) response in the gut and oral microbial communities. We performed 16S rRNA gene (16S) sequencing on IgA positive (IgA+) and IgA negative (IgA-) fractions (IgA-SEQ) from feces (n=17 axSpA; n=14 healthy) and saliva (n=14 axSpA; n=12 healthy), as well as on IgA-unsorted fecal and salivary samples. PICRUSt2 was used to predict microbial metabolic potential in axSpA patients and healthy controls (HCs). IgA-SEQ analyses revealed enrichment of several microbes in the fecal (Akkermansia, Ruminococcaceae, Lachnospira) and salivary (Prevotellaceae, Actinobacillus) microbiome in axSpA patients as compared with HCs. Fecal microbiome from axSpA patients showed a tendency towards increased alpha diversity in IgA+ fraction and decreased diversity in IgA- fraction in comparison with HCs, while the salivary microbiome exhibits a significant decrease in alpha diversity in both IgA+ and IgA- fractions. Increased IgA coating of Clostridiales Family XIII in feces correlated with disease severity. Inferred metagenomic analysis suggests perturbation of metabolites and metabolic pathways for inflammation (oxidative stress, amino acid degradation) and metabolism (propanoate and butanoate) in axSpA patients. Analyses of fecal and salivary microbes from axSpA patients reveal distinct populations of immunoreactive microbes compared to HCs using the IgA-SEQ approach. These bacteria were not identified by comparing their relative abundance alone. Predictive metagenomic analysis revealed perturbation of metabolites/metabolic pathways in axSpA patients. Future studies on these immunoreactive microbes may lead to better understanding of the functional role of IgA in maintaining microbial structure and human health.


Asunto(s)
Espondiloartritis Axial , Microbioma Gastrointestinal , Aminoácidos , Clostridiales/genética , Heces/química , Microbioma Gastrointestinal/genética , Humanos , Inmunoglobulina A/análisis , Propionatos , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
4.
EMBO J ; 39(15): e105127, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567101

RESUMEN

Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.


Asunto(s)
Proteínas Bacterianas , Enzimas Desubicuitinizantes , Legionella/enzimología , Pliegue de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Legionella/genética , Poliubiquitina/química , Poliubiquitina/genética , Poliubiquitina/metabolismo , Especificidad por Sustrato
5.
Cancer Immunol Immunother ; 63(6): 615-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24682539

RESUMEN

Immune responses wane during aging, posing challenges to the potential effectiveness of cancer immunotherapies. We previously demonstrated that in the context of a promising immunotherapeutic, OX40 agonist (αOX40), older animals exhibited impaired anti-tumor immune responses and diminished CD4 T cell effector differentiation. In this study, we hypothesized that tumor immune responses could be maintained during aging through caloric restriction (CR) or dietary supplementation with resveratrol (RES), a CR mimetic. Mice were placed on either a calorically restricted diet or a RES-formulated diet starting between 4 and 6 months of age and continued until mice reached 12 months of age. Tumor immune responses were assessed after challenging with either sarcoma or breast tumor cells followed by αOX40 treatment. Our results show that CR, but not RES, maintained OX40-mediated anti-tumor immunity. In addition, CR fully sustained antigen-specific CD4 T cell priming in aged hosts (12 months old), whereas tumor-specific CD8 T cell priming was not fully maintained compared to young reference animals (2 months old). Thus, CR appears to maintain immunological fitness of the CD4 T cell priming environment during aging, which is critical for optimal OX40-mediated responses.


Asunto(s)
Envejecimiento/inmunología , Anticarcinógenos/farmacología , Linfocitos T CD4-Positivos/inmunología , Restricción Calórica , Neoplasias Experimentales/inmunología , Receptores OX40/agonistas , Estilbenos/farmacología , Traslado Adoptivo , Animales , Western Blotting , Femenino , Citometría de Flujo , Humanos , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias Experimentales/mortalidad , Neoplasias Experimentales/terapia , Resveratrol , Tasa de Supervivencia , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología
6.
J Leukoc Biol ; 96(2): 245-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24714553

RESUMEN

Decline in CD4 T cell immune responses is associated with aging. Although a number of immunological defects have been identified in elderly mice (>18 months old), a key early-onset immune defect at middle age could be a driver or contributor to defective CD4 T cell responses. Our studies demonstrate that age-related alterations in DC subsets within the priming environment of middle-aged mice (12 months old) correlate with and can directly contribute to decreases in antigen-specific CD4 T cell Th1 differentiation, which measured by T-bet and IFN-γ expression, was decreased significantly in T cells following VSV infection or s.c. immunization with a protein antigen in the context of immune stimulation via OX40. The deficient Th1 phenotype, observed following protein antigen challenge, was found to be the result of an age-related decrease in an inflammatory DC subset (CD11b+ Gr-1/Ly6C+) in the dLN that corresponded with T cell dysfunction. In the virus model, we observed significant changes in two DC subsets: mDCs and pDCs. Thus, different, early age-related changes in the DC profile in the priming environment can significantly contribute to impaired Th1 differentiation, depending on the type of immunological challenge.


Asunto(s)
Envejecimiento/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Células TH1/inmunología , Virosis/inmunología , Envejecimiento/genética , Envejecimiento/patología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Diferenciación Celular/genética , Células Dendríticas/patología , Femenino , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Receptores OX40/genética , Receptores OX40/inmunología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunología , Células TH1/patología , Virosis/genética , Virosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...