Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 12(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566061

RESUMEN

Human pluripotent stem cells (hPSCs) are capable of unlimited proliferation and can undergo differentiation to give rise to cells and tissues of the three primary germ layers. While directing lineage selection of hPSCs has been an active area of research, improving the efficiency of differentiation remains an important objective. In this study, we describe a two-compartment microfluidic device for co-cultivation of adult human hepatocytes and stem cells. Both cell types were cultured in a 3D or spheroid format. Adult hepatocytes remained highly functional in the microfluidic device over the course of 4 weeks and served as a source of instructive paracrine cues to drive hepatic differentiation of stem cells cultured in the neighboring compartment. The differentiation of stem cells was more pronounced in microfluidic co-cultures compared to a standard hepatic differentiation protocol. In addition to improving stem cell differentiation outcomes, the microfluidic co-culture system described here may be used for parsing signals and mechanisms controlling hepatic cell fate.


Asunto(s)
Microfluídica , Células Madre Pluripotentes , Humanos , Técnicas de Cocultivo , Microfluídica/métodos , Hepatocitos/metabolismo , Diferenciación Celular
2.
Bioact Mater ; 28: 183-195, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37266448

RESUMEN

The ability to maintain functional hepatocytes has important implications for bioartificial liver development, cell-based therapies, drug screening, and tissue engineering. Several approaches can be used to restore hepatocyte function in vitro, including coating a culture substrate with extracellular matrix (ECM), encapsulating cells within biomimetic gels (Collagen- or Matrigel-based), or co-cultivation with other cells. This paper describes the use of bioactive heparin-based core-shell microcapsules to form and cultivate hepatocyte spheroids. These microcapsules are comprised of an aqueous core that facilitates hepatocyte aggregation into spheroids and a heparin hydrogel shell that binds and releases growth factors. We demonstrate that bioactive microcapsules retain and release endogenous signals thus enhancing the function of encapsulated hepatocytes. We also demonstrate that hepatic function may be further enhanced by loading exogenous hepatocyte growth factor (HGF) into microcapsules and inhibiting transforming growth factor (TGF)-ß1 signaling. Overall, bioactive microcapsules described here represent a promising new strategy for the encapsulation and maintenance of primary hepatocytes and will be beneficial for liver tissue engineering, regenerative medicine, and drug testing applications.

3.
Nat Chem Biol ; 17(10): 1057-1064, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34168368

RESUMEN

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.


Asunto(s)
Formación de Anticuerpos/inmunología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Anticuerpos/inmunología , Antígenos , COVID-19/inmunología , Humanos , Biblioteca de Péptidos , Proteínas Recombinantes/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Saccharomyces cerevisiae/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
bioRxiv ; 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33200136

RESUMEN

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, has poor compatibility with certain antigens ( e . g ., integral membrane proteins), and suffers from self-tolerance and immunodominance, which limit the functional spectrum of antibodies that can be obtained. Here, we describe A utonomous H ypermutation y E ast surf A ce D isplay (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. In AHEAD, antibody fragments are encoded on an error-prone orthogonal DNA replication system, resulting in Saccharomyces cerevisiae populations that continuously mutate surface-displayed antibody repertoires. Simple cycles of yeast culturing and enrichment for antigen binding drive the evolution of high-affinity antibody clones in a readily parallelizable process that takes as little as 2 weeks. We applied AHEAD to generate nanobodies against the SARS-CoV-2 S glycoprotein, a GPCR, and other targets. The SARS-CoV-2 nanobodies, concurrently evolved from an open-source naïve nanobody library in 8 independent experiments, reached subnanomolar affinities through the sequential fixation of multiple mutations over 3-8 AHEAD cycles that saw ∼580-fold and ∼925-fold improvements in binding affinities and pseudovirus neutralization potencies, respectively. These experiments highlight the defining speed, parallelizability, and effectiveness of AHEAD and provide a template for streamlined antibody generation at large with salient utility in rapid response to current and future viral outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...