Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Clin Pharmacol Ther ; 115(2): 278-287, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37964462

RESUMEN

Tusamitamab ravtansine is an antibody-drug conjugate (ADC) composed of a humanized monoclonal antibody (IgG1) and DM4 payload. Even if DM4 and its main metabolite methyl-DM4 (Me-DM4) circulate at low concentrations after ADC administration, their potential as perpetrators of cytochrome P450 mediated drug-drug interaction was assessed. In vitro studies in human hepatocytes indicated that Me-DM4 elicited a clear concentration-dependent down regulation of cytochrome P450 enzymes (CYP3A4, 1A2, and 2B6). Because DM4 was unstable under the incubation conditions studied, the in vitro constants could not be determined for this entity. Thus, to predict the clinical relevance of this observed downregulation, an in vitro-in vivo extrapolation (IVIVE) pharmacokinetic (PK) based approach was developed. To mitigate model prediction errors and because of their similar inhibitory effect on tubulin polymerization, the same downregulation constants were used for DM4 and Me-DM4. This approach describes the time course of decreasing CYP3A4, 1A2, and 2B6 enzyme amounts as a function of circulating concentrations of DM4 and Me-DM4 predicted from a population PK model. The developed IVIVE-PK model showed that the highest CYP abundance decrease was observed for CYP3A4, with a transient reduction of < 10% from baseline. The impact on midazolam exposure, as probe substrate of CYP3A, was then simulated based on a physiologically-based PK static method. The maximal CYP3A4 abundance reduction was associated with a predicted midazolam area under the curve (AUC) ratio of 1.14. To conclude, the observed in vitro downregulation of CYPs by Me-DM4 is not expected to have relevant clinical impact.


Asunto(s)
Anticuerpos , Citocromo P-450 CYP3A , Midazolam , Humanos , Citocromo P-450 CYP3A/metabolismo , Regulación hacia Abajo , Midazolam/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas
3.
Cells ; 12(17)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37681879

RESUMEN

It is widely accepted that cell fate determination in the cochlea is tightly controlled by different transcription factors (TFs) that remain to be fully defined. Here, we show that Sox9, initially expressed in the entire sensory epithelium of the cochlea, progressively disappears from differentiating hair cells (HCs) and is finally restricted to supporting cells (SCs). By performing ex vivo electroporation of E13.5-E14.5 cochleae, we demonstrate that maintenance of Sox9 expression in the progenitors committed to HC fate blocks their differentiation, even if co-expressed with Atoh1, a transcription factor necessary and sufficient to form HC. Sox9 inhibits Atoh1 transcriptional activity by upregulating Hey1 and HeyL antagonists, and genetic ablation of these genes induces extra HCs along the cochlea. Although Sox9 suppression from sensory progenitors ex vivo leads to a modest increase in the number of HCs, it is not sufficient in vivo to induce supernumerary HC production in an inducible Sox9 knockout model. Taken together, these data show that Sox9 is downregulated from nascent HCs to allow the unfolding of their differentiation program. This may be critical for future strategies to promote fully mature HC formation in regeneration approaches.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Epitelio , Diferenciación Celular , Electroporación
4.
Elife ; 122023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327049

RESUMEN

The rubella virus can interfere with fetal brain development by infecting immune cells called microglia during pregnancy.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Rubéola (Sarampión Alemán) , Embarazo , Femenino , Humanos , Virus de la Rubéola , Rubéola (Sarampión Alemán)/prevención & control , Feto , Encéfalo
5.
Cell ; 186(13): 2733-2747, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37352835

RESUMEN

The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.


Asunto(s)
Corteza Cerebral , Neurogénesis , Comunicación Celular , Cognición
6.
Brain ; 146(8): 3528-3541, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36732302

RESUMEN

Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.


Asunto(s)
Diabetes Mellitus , Microcefalia , Humanos , Animales , Ratones , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Esfingomielina Fosfodiesterasa/análisis , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Poro Nuclear/metabolismo , Mitosis , Diabetes Mellitus/metabolismo
7.
Sci Rep ; 13(1): 1223, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681719

RESUMEN

We report the generation and analysis of single-cell RNA-Seq data (> 38,000 cells) from mouse native retinae and induced pluripotent stem cell (iPSC)-derived retinal organoids at four matched stages of development spanning the emergence of the major retinal cell types. We combine information from temporal sampling, visualization of 3D UMAP manifolds, pseudo-time and RNA velocity analyses, to show that iPSC-derived 3D retinal organoids broadly recapitulate the native developmental trajectories. However, we observe relaxation of spatial and temporal transcriptome control, premature emergence and dominance of photoreceptor precursor cells, and susceptibility of dynamically regulated pathways and transcription factors to culture conditions in retinal organoids. We demonstrate that genes causing human retinopathies are enriched in cell-type specifying genes and identify a subset of disease-causing genes with expression profiles that are highly conserved between human retinae and murine retinal organoids. This study provides a resource to the community that will be useful to assess and further improve protocols for ex vivo recapitulation and study of retinal development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ratones , Humanos , Animales , Transcriptoma , Retina/metabolismo , Células Fotorreceptoras , Organoides/metabolismo , Análisis de Secuencia de ARN , Diferenciación Celular/genética
8.
Nat Commun ; 13(1): 7002, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385105

RESUMEN

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Asunto(s)
Proteína de Unión a CREB , Proteínas de Choque Térmico , Trastornos del Neurodesarrollo , Síndrome de Rubinstein-Taybi , Factores de Transcripción , Humanos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(46): e2209714119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343267

RESUMEN

KIF2A is an atypical kinesin that has the capacity to depolymerize microtubules. Patients carrying mutations in KIF2A suffer from progressive microcephaly and mental disabilities. While the role of this protein is well documented in neuronal migration, the relationship between its dysfunction and the pathobiology of brain disorders is unclear. Here, we report that KIF2A is dispensable for embryogenic neurogenesis but critical in postnatal stages for maturation, connectivity, and maintenance of neurons. We used a conditional approach to inactivate KIF2A in cortical progenitors, nascent postmitotic neurons, and mature neurons in mice. We show that the lack of KIF2A alters microtubule dynamics and disrupts several microtubule-dependent processes, including neuronal polarity, neuritogenesis, synaptogenesis, and axonal transport. KIF2A-deficient neurons exhibit aberrant electrophysiological characteristics, neuronal connectivity, and function, leading to their loss. The role of KIF2A is not limited to development, as fully mature neurons require KIF2A for survival. Our results emphasize an additional function of KIF2A and help explain how its mutations lead to brain disorders.


Asunto(s)
Encefalopatías , Proteínas Represoras , Animales , Ratones , Proteínas Represoras/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Neuronas/metabolismo , Encefalopatías/metabolismo
10.
Front Cell Dev Biol ; 10: 1015125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393857

RESUMEN

The six subunits (Elp1 to Elp6) Elongator complex promotes specific uridine modifications in tRNA's wobble site. Moreover, this complex has been indirectly involved in the regulation of α-tubulin acetylation in microtubules (MTs) via the stabilization of ATP-Citrate Lyase (Acly), the main cytosolic source of acetyl-CoA production in cells, a key substrate used for global protein acetylation. Here, we report additional evidence that Elongator activity is important for proper cytoskeleton remodeling as cells lacking expression of Elp1 show morphology impairment; including distinct neurite process formation and disorganization and instability of MTs. Here, we show that loss of Elongator results in a reduction of expression of the microtubule associated protein Tau (MAPT). Tau, is a well-known key MT regulator in neurons whose lysines can be competitively acetylated or ubiquitylated. Therefore, we tested whether Tau is an indirect acetylation target of Elongator. We found that a reduction of Elongator activity leads to a decrease of lysine acetylation on Tau that favors its proteasomal degradation. This phenotype was prevented by using selective deacetylase or proteasomal inhibitors. Moreover, our data demonstrate that Acly's activity regulates the mechanism underlying Tau mediated neurite morphology defects found in Elp1 KD since both Tau levels and neurites morphology are restored due to Acly overexpression. This suggests a possible involvement of both Tau and Acly dysfunction in Familial Dysautonomia (FD), which is an autosomal recessive peripheral neuropathy caused by mutation in the ELP1 gene that severely affects Elp1 expression levels in the nervous system in FD patients in a similar way as found previously in Elp1 KD neuroblastoma cells.

11.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36361546

RESUMEN

The interest in therapeutic monoclonal antibodies (mAbs) has continuously growing in several diseases. However, their pharmacokinetics (PK) is complex due to their target-mediated drug disposition (TMDD) profiles which can induce a non-linear PK. This point is particularly challenging during the pre-clinical and translational development of a new mAb. This article reviews and describes the existing PK modeling approaches used to translate the mAbs PK from animal to human for intravenous (IV) and subcutaneous (SC) administration routes. Several approaches are presented, from the most empirical models to full physiologically based pharmacokinetic (PBPK) models, with a focus on the population PK methods (compartmental and minimal PBPK models). They include the translational approaches for the linear part of the PK and the TMDD mechanism of mAbs. The objective of this article is to provide an up-to-date overview and future perspectives of the translational PK approaches for mAbs during a model-informed drug development (MIDD), since the field of PK modeling has gained recently significant interest for guiding mAbs drug development.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Animales , Humanos , Modelos Biológicos , Distribución Tisular , Inyecciones Subcutáneas
12.
Science ; 377(6611): 1155-1156, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074827

RESUMEN

A genetic change could explain increased cortical neurogenesis in modern humans.


Asunto(s)
Evolución Biológica , Neocórtex , Neurogénesis , Neuronas , Animales , Humanos , Neocórtex/citología , Neocórtex/embriología , Neurogénesis/genética , Neuronas/citología
13.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142366

RESUMEN

p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.


Asunto(s)
Proteínas de Ciclo Celular , Microglía , Actinas , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Microglía/metabolismo
14.
EMBO J ; 41(18): e109353, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920020

RESUMEN

Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1-activating signals in myeloid cells, where it limits the production of pro-inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2-activating signals upregulate Elp3 expression through a PI3K- and STAT6-dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon-dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt-driven tumor initiation in the intestine by maintaining a pool of tumor-associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.


Asunto(s)
Histona Acetiltransferasas , Activación de Macrófagos , Transducción de Señal , Animales , Codón/metabolismo , Histona Acetiltransferasas/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones
15.
Clin Transl Med ; 12(8): e1004, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35908265
16.
Glia ; 70(11): 2157-2168, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35809029

RESUMEN

Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.


Asunto(s)
Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Cationes , Citoesqueleto , Microglía/fisiología , Canales Catiónicos TRPV/genética
17.
Eur J Cancer ; 172: 85-95, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35759814

RESUMEN

BACKGROUND: Mutations in STK11/LKB1 gene present a negative impact on tumour immune microenvironment, especially with concomitant activating KRAS mutation. These recent data may explain a decreased response to immunotherapy treatment in STK11 mutant non-small cell lung cancer (NSCLC). OBJECTIVE: The primary objective is to evaluate, in a real-life setting, overall survival (OS) in patients with NSCLC according to the presence of STK11 mutation. The secondary objective is to assess time to treatment failure (TTF) for the first-line chemotherapy or immunotherapy. METHODS: This observational multicentric study was conducted in Nouvelle-Aquitaine (France), for 24 months. Clinical, histopathological and imagery data were collected in each centre while the next-generation sequencing analysis was performed in Bordeaux Hospital University. Patient's data were longitudinally followed from NSCLC diagnosis date to the occurrence of censoring events (therapeutic failure or death, as applicable) or until the study end date. RESULTS: median OS from the first drug administration was significantly longer for STK11wt patients than STK11mut patients (16.2 months [11 - nr] versus 4.7 months [2.5-9.4]; Log-rank test P < 0.001). The Presence of STK11 mutation was significantly associated with shortened OS (RR = 2.26 [1.35-3.79], P = 0.002). First-line TTF was significantly shorter in STK11mut population and the presence of the mutation was significantly associated with an increase in treatment failures (RR = 1.87 [1.21-2.89], P = 0.005). The type of treatment (chemotherapy, immunotherapy) does not influence the amplitude of reduced TTF in patients with STK11mut. CONCLUSION: The presence of STK11 mutation is associated with poor prognosis in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasas de la Proteína-Quinasa Activada por el AMP , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutación , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral
18.
Science ; 376(6595): eabn6204, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587969

RESUMEN

In the forebrain, ventrally derived oligodendrocyte precursor cells (vOPCs) travel tangentially toward the cortex together with cortical interneurons. Here, we tested in the mouse whether these populations interact during embryogenesis while migrating. By coupling histological analysis of genetic models with live imaging, we show that although they are both attracted by the chemokine Cxcl12, vOPCs and cortical interneurons occupy mutually exclusive forebrain territories enriched in this chemokine. Moreover, first-wave vOPC depletion selectively disrupts the migration and distribution of cortical interneurons. At the cellular level, we found that by promoting unidirectional contact repulsion, first-wave vOPCs steered the migration of cortical interneurons away from the blood vessels to which they were both attracted, thereby allowing interneurons to reach their proper cortical territories.


Asunto(s)
Movimiento Celular , Corteza Cerebral , Interneuronas , Neurogénesis , Células Precursoras de Oligodendrocitos , Animales , Movimiento Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Quimiocina CXCL12/metabolismo , Interneuronas/fisiología , Ratones , Modelos Genéticos , Neurogénesis/genética , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/fisiología
19.
Methods Mol Biol ; 2431: 207-224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412278

RESUMEN

Axonal transport is used by neurons to distribute mRNAs, proteins, and organelles to their peripheral compartments in order to sustain their structural and functional integrity. Cargoes are transported along the microtubule (MT) network whose post-translational modifications influence transport dynamics. Here, we describe methods to modulate MT acetylation and record its impact on axonal transport in cultured mouse cortical projection neurons as well as in motoneurons of Drosophila melanogaster third-instar larvae. Specifically, we provide a step-by step procedure to reduce the level of MT acetylation and to record and analyze the transport of dye-labeled organelles in projection neuron axons cultured in microfluidic chambers. In addition, we describe the method to record and analyze GFP-tagged mitochondria transport along the motoneuron axons of transgenic Drosophila melanogaster third-instar larvae.


Asunto(s)
Transporte Axonal , Drosophila melanogaster , Acetilación , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva , Ratones , Microtúbulos/metabolismo , Neuronas Motoras , Procesamiento Proteico-Postraduccional
20.
Dev Neurobiol ; 82(5): 392-407, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35476229

RESUMEN

Cerebral cortex development involves the sequential progression of biological steps driven by molecular pathways whose tight regulation often relies on ubiquitination. Ubiquitination is a posttranslational modification involved in all aspects of cellular homeostasis through the attachment of a ubiquitin (Ub) moiety on proteins. Over the past years, an increasing amount of research has highlighted the crucial role played by Ub ligases in every step of cortical development and whose impairment often leads to various neurodevelopmental disorders. In this review, we focus on the key contributions of E3 Ub ligases for the progression of the different steps of corticogenesis, as well as the pathological consequences of their mutations, often resulting in malformations of cortical development. Finally, we discuss some promising therapeutic strategies for these diseases based on recent advances in the field.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Corteza Cerebral/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA