Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Med Sci ; 21(12): 2348-2364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310264

RESUMEN

Recent advancements have elucidated the multifaceted roles of the Schlafen (SLFN) family, including SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14, which are implicated in immunological responses. However, little is known about the roles of this gene family in relation to malignancy development. The current study aimed to explore the diagnostic and prognostic potential of Schlafen family genes in colorectal adenocarcinoma (COAD) through bioinformatics analysis. Leveraging advanced bioinformatics tools of bulk RNA-sequencing and single-cell sequencing, we conducted in-depth analyses of gene expressions, functional enrichment, and survival patterns of patients with colorectal cancer compared to normal tissue. Among Schlafen family genes, the transcription levels of SLFN5 in COAD tissues were significantly elevated and correlated with poor survival outcomes. Furthermore, SLFN5 regulated the immune response via Janus kinase (JAK)/signal transduction and activator of transcription (STAT)/interferon (IFN)-alpha/beta signaling. These chemokines in inflammation are associated with diabetes and metabolism, suggesting their involvement in altered cellular energetics for COAD progress. In addition, an immune cell deconvolution analysis indicated a correlation between SLFN5 expression and immune-related cell populations, such as regulatory T cells (Tregs). These findings highlighted the potential clinical significance of SLFN5 in COAD and provided insights into its involvement in the tumor microenvironment and immune regulation. Meanwhile, the drug discovery data of SFLN5 with potential targeted small molecules suggested its therapeutic potential for COAD. Collectively, the current research demonstrated that SFLN5 play crucial roles in tumor development and serve as a prospective biomarker for COAD.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Análisis de la Célula Individual , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Análisis de la Célula Individual/métodos , Pronóstico , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Análisis de Secuencia de ARN , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/mortalidad , Perfilación de la Expresión Génica , Transducción de Señal/genética , Transducción de Señal/inmunología , Proteínas de Ciclo Celular
2.
Nat Cardiovasc Res ; 3(3): 372-388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39183959

RESUMEN

Targeting Meis1 and Hoxb13 transcriptional activity could be a viable therapeutic strategy for heart regeneration. In this study, we performd an in silico screening to identify FDA-approved drugs that can inhibit Meis1 and Hoxb13 transcriptional activity based on the resolved crystal structure of Meis1 and Hoxb13 bound to DNA. Paromomycin (Paro) and neomycin (Neo) induced proliferation of neonatal rat ventricular myocytes in vitro and displayed dose-dependent inhibition of Meis1 and Hoxb13 transcriptional activity by luciferase assay and disruption of DNA binding by electromobility shift assay. X-ray crystal structure revealed that both Paro and Neo bind to Meis1 near the Hoxb13-interacting domain. Administration of Paro-Neo combination in adult mice and in pigs after cardiac ischemia/reperfusion injury induced cardiomyocyte proliferation, improved left ventricular systolic function and decreased scar formation. Collectively, we identified FDA-approved drugs with therapeutic potential for induction of heart regeneration in mammals.


Asunto(s)
Proliferación Celular , Proteínas de Homeodominio , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Miocitos Cardíacos , Regeneración , Animales , Regeneración/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proliferación Celular/efectos de los fármacos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Neomicina/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Modelos Animales de Enfermedad , Aprobación de Drogas , Ratones , Función Ventricular Izquierda/efectos de los fármacos , United States Food and Drug Administration , Ratas , Estados Unidos , Cristalografía por Rayos X , Masculino , Ratones Endogámicos C57BL , Porcinos , Células Cultivadas , Transcripción Genética/efectos de los fármacos
3.
Biochem Biophys Rep ; 39: 101762, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39026565

RESUMEN

Background: Cell confluency and serum deprivation promote the transition of C2C12 myoblasts into myocytes and subsequence fusion into myotubes. However, despite all myoblasts undergoing the same serum deprivation trigger, their responses vary: whether they become founder myocytes, remain proliferative, or evolve into fusion-competent myocytes remains unclear. We have previously shown that depletion of the scaffolding protein palladin in myoblasts inhibits cell migration and promotes premature muscle differentiation, pointing to its potential significance in muscle development and the necessity for a more in-depth examination of its function in cellular heterogeneity. Methods and results: Here, we showed that the subcellular localization of palladin might contribute to founder-fate cell decision in the early differentiation process. Depleting palladin in C2C12 myoblasts depleted integrin-ß3 plasma membrane localization of and focal adhesion formation at the early stage of myogenesis, decreased kindlin-2 and metavinculin expression during the myotube maturation process, leading to the inability of myocytes to fuse into preexisting mature myotubes. This aligns with previous findings where early differentiation into nascent myotubes occurred but compromised maturation. In contrast, wildtype C2C12 overexpressing the 140-kDa palladin isoform developed a polarized morphology with star-like structures toward other myoblasts. However, this behaviour was not observed in palladin-depleted cells, where the 140-kDa palladin overexpression could not recover cell migration capacity, suggesting other palladin isoforms are also needed to establish cell polarity. Conclusion: Our study identifies a counter-intuitive role for palladin in regulating myoblast-to-myocyte cell fate decisions and impacting their ability to form mature multinucleated myotubes by influencing cell signalling pathways and cytoskeletal organization, necessary for skeletal muscle regeneration and repair studies.

4.
Environ Toxicol ; 39(11): 4844-4858, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38884142

RESUMEN

Environmental antineoplastics such as sorafenib may pose a risk to humans through water recycling, and the increased risk of cardiotoxicity is a clinical issue in sorafenib users. Thus, developing strategies to prevent sorafenib cardiotoxicity is an urgent work. Empagliflozin, as a sodium-glucose co-transporter-2 (SGLT2) inhibitor for type 2 diabetes control, has been approved for heart failure therapy. Still, its cardioprotective effect in the experimental model of sorafenib cardiotoxicity has not yet been reported. Real-time quantitative RT-PCR (qRT-PCR), immunoblot, and immunohistochemical analyses were applied to study the effect of sorafenib exposure on cardiac SGLT2 expression. The impact of empagliflozin on cell viability was investigated in the sorafenib-treated cardiomyocytes using Alamar blue assay. Immunoblot analysis was employed to delineate the effect of sorafenib and empagliflozin on ferroptosis/proinflammatory signaling in cardiomyocytes. Ferroptosis/DNA damage/fibrosis/inflammation of myocardial tissues was studied in mice with a 28-day sorafenib ± empagliflozin treatment using histological analyses. Sorafenib exposure significantly promoted SGLT2 upregulation in cardiomyocytes and mouse hearts. Empagliflozin treatment significantly attenuated the sorafenib-induced cytotoxicity/DNA damage/fibrosis in cardiomyocytes and mouse hearts. Moreover, GPX4/xCT-dependent ferroptosis as an inducer for releasing high mobility group box 1 (HMGB1) was also blocked by empagliflozin administration in the sorafenib-treated cardiomyocytes and myocardial tissues. Furthermore, empagliflozin treatment significantly inhibited the sorafenib-promoted NFκB/HMGB1 axis in cardiomyocytes and myocardial tissues, and sorafenib-stimulated proinflammatory signaling (TNF-α/IL-1ß/IL-6) was repressed by empagliflozin administration. Finally, empagliflozin treatment significantly attenuated the sorafenib-promoted macrophage recruitments in mouse hearts. In conclusion, empagliflozin may act as a cardioprotective agent for humans under sorafenib exposure by modulating ferroptosis/DNA damage/fibrosis/inflammation. However, further clinical evidence is required to support this preclinical finding.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Miocitos Cardíacos , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Sorafenib , Animales , Glucósidos/farmacología , Compuestos de Bencidrilo/toxicidad , Sorafenib/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Masculino , Ratones Endogámicos C57BL , Transportador 2 de Sodio-Glucosa/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Cardiotoxicidad/prevención & control , Miocarditis/inducido químicamente , Miocarditis/patología , Miocarditis/prevención & control , Miocardio/patología , Miocardio/metabolismo , Antineoplásicos/toxicidad
5.
Circulation ; 150(10): 791-805, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38708635

RESUMEN

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in vitro and in vivo identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.


Asunto(s)
Proteínas de Unión a Calmodulina , Mitosis , Miocitos Cardíacos , Sarcómeros , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Animales , Sarcómeros/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/genética , Ratones , Fosforilación , Animales Recién Nacidos , Células Cultivadas , Ratas , Humanos
6.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38455514

RESUMEN

Introduction: Gradual exposure to a chronic hypoxic environment leads to cardiomyocyte proliferation and improved cardiac function in mouse models through a reduction in oxidative DNA damage. However, the upstream transcriptional events that link chronic hypoxia to DNA damage have remained obscure. Aim: We sought to determine whether hypoxia signaling mediated by the hypoxia-inducible factor 1 or 2 (HIF1A or HIF2A) underlies the proliferation phenotype that is induced by chronic hypoxia. Methods and Results: We used genetic loss-of-function models using cardiomyocyte-specific HIF1A and HIF2A gene deletions in chronic hypoxia. We additionally characterized a cardiomyocyte-specific HIF2A overexpression mouse model in normoxia during aging and upon injury. We performed transcriptional profiling with RNA-sequencing on cardiac tissue, from which we verified candidates at the protein level. We find that HIF2A - rather than HIF1A - mediates hypoxia-induced cardiomyocyte proliferation. Ectopic, oxygen-insensitive HIF2A expression in cardiomyocytes reveals the cell-autonomous role of HIF2A in cardiomyocyte proliferation. HIF2A overexpression in cardiomyocytes elicits cardiac regeneration and improvement in systolic function after myocardial infarction in adult mice. RNA-sequencing reveals that ectopic HIF2A expression attenuates DNA damage pathways, which was confirmed with immunoblot and immunofluorescence. Conclusion: Our study provides mechanistic insights about a new approach to induce cardiomyocyte renewal and mitigate cardiac injury in the adult mammalian heart. In light of evidence that DNA damage accrues in cardiomyocytes with aging, these findings may help to usher in a new therapeutic approach to overcome such age-related changes and achieve regeneration.

7.
Biomed Pharmacother ; 162: 114614, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068330

RESUMEN

The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, where ecto-5'-nucleotidase (NT5E) was downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates with SARS-CoV-2 antiviral activity. While mebendazole does appear to target Mpro, atovaquone may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.


Asunto(s)
Antivirales , COVID-19 , Humanos , Antivirales/farmacología , SARS-CoV-2 , Dihidroorotato Deshidrogenasa , Reposicionamiento de Medicamentos , Dronedarona/farmacología , Pandemias , Atovacuona/farmacología , Mebendazol/farmacología , Purinas/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular
8.
Environ Pollut ; 327: 121476, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36997141

RESUMEN

Plasticizers are considered as environmental pollution released from medical devices and increased potential oncogenic risks in clinical therapy. Our previous studies have shown that long-term exposure to di-ethylhexyl phthalate (DEHP)/mono-ethylhexyl phthalate (MEHP) promotes chemotherapeutic drug resistance in colorectal cancer. In this study, we investigated the alteration of glycosylation in colorectal cancer following long-term plasticizers exposure. First, we determined the profiles of cell surface N-glycomes by using mass spectrometry and found out the alterations of α2,8-linkages glycans. Next, we analyzed the correlation between serum DEHP/MEHP levels and ST8SIA6 expression from matched tissues in total 110 colorectal cancer patients. Moreover, clinical specimens and TCGA database were used to analyze the expression of ST8SIA6 in advanced stage of cancer. Finally, we showed that ST8SIA6 regulated stemness in vitro and in vivo. Our results revealed long-term DEHP/MEHP exposure significantly caused cancer patients with poorer survival outcome and attenuated the expression of ST8SIA6 in cancer cells and tissue samples. As expected, silencing of ST8SIA6 promoted cancer stemness and tumorigenicity by upregulating stemness-associated proteins. In addition, the cell viability assay showed enhanced drug resistance in ST8SIA6 silencing cells treated with irinotecan. Besides, ST8SIA6 was downregulated in the advanced stage and positively correlated with tumor recurrence in colorectal cancer. Our results imply that ST8SIA6 potentially plays an important role in oncogenic effects with long-term phthalates exposure.


Asunto(s)
Neoplasias Colorrectales , Dietilhexil Ftalato , Humanos , Plastificantes/análisis , Dietilhexil Ftalato/análisis , Glicosilación , Sialiltransferasas/metabolismo
9.
Nat Cardiovasc Res ; 1(7): 679-688, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39196243

RESUMEN

The mammalian neonatal heart can regenerate for 1 week after birth, after which, the majority of cardiomyocytes exit the cell cycle. Recent studies demonstrated that calcineurin mediates cell-cycle arrest of postnatal cardiomyocytes, partly through induction of nuclear translocation of the transcription factor Hoxb13 (a cofactor of Meis1). Here we show that inducible cardiomyocyte-specific deletion of calcineurin B1 in adult cardiomyocytes markedly decreases cardiomyocyte size and promotes mitotic entry, resulting in increased total cardiomyocyte number and improved left ventricular (LV) systolic function after myocardial infarction (MI). Similarly, pharmacological inhibition of calcineurin activity using FK506 promotes cardiomyocyte proliferation in vivo and increases cardiomyocyte number; however, FK506 administration after MI in mice failed to improve LV systolic function, possibly due to inhibition of vasculogenesis and blunting of the post-MI inflammatory response. Collectively, our results demonstrate that loss of calcineurin activity in adult cardiomyocytes promotes cell cycle entry; however, the effects of the calcineurin inhibitor FK506 on other cell types preclude a significant improvement of LV systolic function after MI.

10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33627480

RESUMEN

Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.


Asunto(s)
Sistema Nervioso Central/enzimología , Clortetraciclina , Neuralgia , Inhibidores de Proteínas Quinasas , Receptor EphB1 , Animales , Clortetraciclina/química , Clortetraciclina/farmacología , Cristalografía por Rayos X , Humanos , Masculino , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/enzimología , Dominios Proteicos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor EphB1/antagonistas & inhibidores , Receptor EphB1/química , Receptor EphB1/metabolismo
11.
Nat Metab ; 2(2): 167-178, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32617517

RESUMEN

The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.


Asunto(s)
Ciclo Celular , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Animales , Daño del ADN , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Nature ; 582(7811): 271-276, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499640

RESUMEN

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Asunto(s)
Calcineurina/metabolismo , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Miocardio/citología , Unión Proteica , Regeneración
13.
Circulation ; 141(22): 1787-1799, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32272846

RESUMEN

BACKGROUND: Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. METHODS: Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. RESULTS: In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. CONCLUSIONS: These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia de la Válvula Mitral/patología , Miocitos Cardíacos/patología , Animales , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Forma de la Célula , Tamaño de la Célula , Ecocardiografía , Fibrosis , Perfilación de la Expresión Génica , Hipertrofia , Bombas de Infusión Implantables , Imagen por Resonancia Magnética , Masculino , Ratones , Válvula Mitral/lesiones , Insuficiencia de la Válvula Mitral/complicaciones , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Miocitos Cardíacos/metabolismo , Polirribosomas/ultraestructura , ARN Mensajero/biosíntesis , Sirolimus/farmacología , Sirolimus/uso terapéutico , Sístole , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/fisiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/patología
14.
Circulation ; 139(20): 2342-2357, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30818997

RESUMEN

BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.


Asunto(s)
Fibroblastos/ultraestructura , Miocardio/patología , Riñón Poliquístico Autosómico Dominante/patología , Células 3T3/ultraestructura , Animales , Animales Recién Nacidos , Remodelación Atrial , Cilios , Corazón Fetal/citología , Fibrosis , Lesiones Cardíacas/patología , Humanos , Cinesinas/deficiencia , Cinesinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Riñón Poliquístico Autosómico Dominante/genética , Ratas , Transducción de Señal , Proteína smad3/fisiología , Canales Catiónicos TRPP/deficiencia , Canales Catiónicos TRPP/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Remodelación Ventricular
15.
EMBO Rep ; 19(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30389725

RESUMEN

Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo , Proteínas Musculares/metabolismo , Termogénesis , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adrenérgicos/farmacología , Animales , Calcineurina/metabolismo , Proteínas de Unión al Calcio , Diferenciación Celular/efectos de los fármacos , Frío , Femenino , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Metabolismo/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Obesidad/metabolismo , Obesidad/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas/genética , Proteolípidos/genética , Proteolípidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
16.
PLoS One ; 10(4): e0124762, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875253

RESUMEN

Palladin is a microfilament-associated phosphoprotein whose function in skeletal muscle has rarely been studied. Therefore, we investigate whether myogenesis is influenced by the depletion of palladin expression known to interfere with the actin cytoskeleton dynamic required for skeletal muscle differentiation. The inhibition of palladin in C2C12 myoblasts leads to precocious myogenic differentiation with a concomitant reduction in cell apoptosis. This premature myogenesis is caused, in part, by an accelerated induction of p21, myogenin, and myosin heavy chain, suggesting that palladin acts as a negative regulator in early differentiation phases. Paradoxically, palladin-knockdown myoblasts are unable to differentiate terminally, despite their ability to perform some initial steps of differentiation. Cells with attenuated palladin expression form thinner myotubes with fewer myonuclei compared to those of the control. It is noteworthy that a negative regulator of myogenesis, myostatin, is activated in palladin-deficient myotubes, suggesting the palladin-mediated impairment of late-stage myogenesis. Additionally, overexpression of 140-kDa palladin inhibits myoblast differentiation while 200-kDa and 90-kDa palladin-overexpressed cells display an enhanced differentiation rate. Together, our data suggest that palladin might have both positive and negative roles in maintaining the proper skeletal myogenic differentiation in vitro.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Animales , Apoptosis , Caspasa 7/metabolismo , Diferenciación Celular , Línea Celular , Movimiento Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Miogenina/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miostatina/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
17.
Biochem Biophys Res Commun ; 452(3): 728-33, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25194811

RESUMEN

The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.


Asunto(s)
Actinas/genética , Proteínas del Citoesqueleto/genética , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Fosfoproteínas/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Ratones , Mioblastos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...