Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(32): eadp0778, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121228

RESUMEN

This study reports intrinsic multimodal memristivity of a nonconjugated radical polymer with ambient stability. Organic memristive devices represent powerful candidates for biorealistic data storage and processing. However, there exists a substantial knowledge gap in realizing the synthetic biorealistic systems capable of effectively emulating the cooperative and multimodal activation processes in biological systems. In addition, conventional organic memristive materials are centered on conjugated small and macromolecules, making them synthetically challenging or difficult to process. In this work, we first describe the intrinsic resistive switching of the radical polymer that resulted in an exceptional state retention of >105 s and on/off ratio of >106. Next, we demonstrate its bimodal cooperative switching, in response to the proton accumulation as a biological input. Last, we expand our system toward an advanced in-sensor computing system. Our research demonstrates a nonconjugated radical polymer with intrinsic memristivity, which is directly applicable to future electronics including data storage, neuromorphics, and in-sensor computing.

2.
JACS Au ; 4(2): 690-696, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425938

RESUMEN

Nonconjugated organic radicals with an open-shell radical active group exhibit unique functionality due to their radical pendant site. Compared with the previously studied doped conjugated polymers, radical polymers reveal superior processability, stability, and optical properties. Despite the success of organic radical polymer conductors based on the TEMPO radicals, it still requires potential design substitutions to meet the fundamental limits of charge transport in the radical polymer. To do so, we demonstrate that the amorphous, nonconjugated radical polymer with backbone-pendant group interaction and low glass transition temperature enables the macromolecules to have rapid charge transport in the solid state, resulting in conductivity higher than 32 S m-1. This charge transport is due to the formation of the local ordered regime with an energetically favored orientation caused by the strong coupling between the backbone and pendant group, which can significantly modulate the polymer packing with active electronic communications. The nonconjugate nature of the radical polymer maintains an optical transparency up to 98% at a 1.5 µm thick film. Thus, this effort will be a dramatically advanced model in the organic radical community for the creation of next-generation polymer conductors.

3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373366

RESUMEN

The foraging (for) gene of Drosophila melanogaster encodes a cGMP-dependent protein kinase (PKG), which is a major effector of the cGMP signaling pathway involved in the regulation of behaviour and metabolic traits. Despite being well studied at the transcript level, little is known about the for gene at the protein level. Here, we provide a detailed characterization of the for gene protein (FOR) products and present new tools for their study, including five isoform-specific antibodies and a transgenic strain that carries an HA-labelled for allele (forBAC::HA). Our results showed that multiple FOR isoforms were expressed in the larval and adult stages of D. melanogaster and that the majority of whole-body FOR expression arises from three (P1, P1α, and P3) of eight putative protein isoforms. We found that FOR expression differed between the larval and adult stages and between the dissected larval organs we analyzed, which included the central nervous system (CNS), fat body, carcass, and intestine. Moreover, we showed that the FOR expression differed between two allelic variants of the for gene, namely, fors (sitter) and forR (rover), that are known to differ in many food-related traits. Together, our in vivo identification of FOR isoforms and the existence of temporal, spatial, and genetic differences in their expression lay the groundwork for determining their functional significance.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Conducta Alimentaria/fisiología , Animales Modificados Genéticamente , Fenotipo , Isoformas de Proteínas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Adv Mater ; 35(6): e2208151, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36433696

RESUMEN

Physical entities with inherent randomness have been investigated as anti-counterfeiting labels based on physical unclonable functions (PUFs). Herein, a transparent and flexible optical PUF label associated with multilevel complexity is demonstrated by taking advantage of the optical properties of hierarchical morphologies of the composite film composed of metal halide perovskite nanoparticles (MAPbBr3 NPs) and the intrinsic spinodal-decomposition-like phase separation of polymer blend (PMMA/PS blend). Due to the combinatorial effects of the photolysis synthesis of MAPbBr3 and the thermodynamic instability of the PMMA/PS blend, randomized patterns emerge at two-level scales. These patterns are intrinsically non-deterministic, and therefore, the PUF labels from the multilevel random patterns are challenging to replicate. This is mainly attributed to random spot patterns (higher-level patterns) confined within intricate bicontinuous patterns (lower-level patterns).

5.
Org Lett ; 24(45): 8337-8342, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36332060

RESUMEN

Visible-light-induced energy transfer to N-enoxybenzotriazoles in the presence of hydrogen atom donors or alcoholic solvents led to α-carbonyl radicals. The utility of the α-carbonyl radicals was demonstrated in intramolecular tandem cyclization and in the synthesis of 9-phenanthrols and their analogues. The mechanistic experiments suggested that quenching of the reactive benzotriazolyl radical by the alcohol was accompanied by the formation of an α-hydroxy radical that mediated hydrogen atom transfer or, itself, oxidized into aldehydes.


Asunto(s)
Hidrógeno , Fenantrenos , Radicales Libres , Ciclización
6.
Mol Pain ; 18: 17448069221074991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35083928

RESUMEN

Offset analgesia is defined by a dramatic drop in perceived pain intensity with a relatively small decrease in noxious input. Although functional magnetic resonance imaging studies implicate subcortical descending inhibitory circuits during offset analgesia, the role of cortical areas remains unclear. The current study identifies cortical correlates of offset analgesia using functional near infrared spectroscopy (fNIRS). Twenty-four healthy volunteers underwent fNIRS scanning during offset (OS) and control (Con) heat stimuli applied to the forearm. After controlling for non-neural hemodynamic responses in superficial tissues, widespread increases in cortical oxygenated hemoglobin concentration were observed, reflecting cortical activation during heat pain. OS-Con contrasts revealed deactivations in bilateral medial prefrontal cortex (mPFC) and bilateral somatosensory cortex (SSC) associated with offset analgesia. Right dorsolateral prefrontal cortex (dlPFC) showed activation only during OS. These data demonstrate opposing cortical activation patterns during offset analgesia and support a model in which right dlPFC underlies ongoing evaluation of pain intensity change. With predictions of decreasing pain intensity, right dlPFC activation likely inhibits ascending noxious input via subcortical pathways resulting in SSC and mPFC deactivation. This study identifies cortical circuitry underlying offset analgesia and introduces the use of fNIRS to study pain modulation in an outpatient clinical environment.


Asunto(s)
Analgesia , Espectroscopía Infrarroja Corta , Analgesia/métodos , Corteza Prefontal Dorsolateral , Humanos , Dolor , Dimensión del Dolor/métodos , Corteza Prefrontal , Espectroscopía Infrarroja Corta/métodos
7.
Chem Rec ; 22(1): e202100172, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34418282

RESUMEN

Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.

8.
Chem Sci ; 10(38): 8799-8805, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31803452

RESUMEN

Oxidative coupling of 1,3-enynamides using DMSO as a terminal oxidant has been developed. Carbon as well as unmodified heteroatom nucleophiles, including aliphatic alcohols, thiols, and hydrazides, could be efficiently alkylated at the γ-position in a highly regioselective fashion. The kinetic analysis suggested a nucleophile-dependent mechanism ranging from a concerted SN2'' to a carbocationic mechanism. Thus, the remote site-selectivity was ascribed to the partial positive charge developing at the terminal carbocationic center.

9.
Org Lett ; 21(22): 9009-9013, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31692359

RESUMEN

Oxidation of ynamides by mCPBA led to ß-oxygenation and resulted in formation of carbonyl compounds with α-N,O-acetal functionality. These N,O-acetals are formed in high yields and can be stored indefinitely at room temperature. Yet, they can be activated by a chiral Brønsted acid and underwent an enantioselective transacetalization into a α-N,O-acetal. Subsequent diastereoselective transformations occurred with exceptional selectivity according to Felkin-Anh model.

10.
Angew Chem Int Ed Engl ; 56(13): 3670-3674, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28230305

RESUMEN

A non-metal approach for accessing α-oxo carbene surrogates for a C-C bond-forming bimolecular coupling between ynamides and nucleophilic arenes was developed. This acid-catalyzed coupling features mild temperature, which is critical for the required temporal chemoselectivity among nucleophiles. The scope of nucleophiles includes indoles, pyrroles, anilines, phenols and silyl enolethers. Furthermore, a direct test of SN 2' mechanism has been provided by employing chiral N,N'-dioxides which also enlightens the nature of the intermediates in related metal-catalyzed processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...