Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 923: 171450, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438028

RESUMEN

Delafloxacin (DFX), one of the latest additions to the fluoroquinolone antibiotics, is gaining heightened recognition in human therapy due to its potential antibacterial efficacy in a wide range of applications. Concerns have arisen regarding its presence in the environment and its potential interactions with multivalent metals, such as calcium (Ca). The present study investigated the trans- and multigenerational effects of environmentally projected concentrations of DFX (100-400 µg DFX L-1) on individual- and population-level responses of parental S. vetulus (F0) and its descendants (F1) under normal (26 mg L-1) and high (78 mg L-1) Ca conditions. Exposure of the F0 generation to DFX under the normal Ca condition resulted in reduced juvenile body length (JBL), increased age-specific survival rate (lx), indicating prolonged developmental time, reduced age-specific fecundity rate (mx), and decreased population growth rate (rm). Under the high Ca condition, JBL, mx, and rm were adversely affected. Transgenerational effects of DFX existed, as F1 individuals exhibited persistent suppressions in at least one endpoint under both Ca conditions even after being transferred to a clear medium. Continuous exposure of the F1 generation to DFX had negative impacts on JBL, mx, and rm under the normal Ca condition, and on JBL and rm under the high Ca condition. However, cumulative effects were not observed, suggesting the potential development of tolerance to DFX in the F1 organisms. These findings suggest that DFX is a harmful compound for the non-target model organism S. vetulus and reveal a potential antagonism between DFX and Ca. Nevertheless, the interaction between other (fluoro)quinolones and Ca remains unclear, necessitating further research to establish this phenomenon more comprehensively, including understanding the interaction mechanism in ecotoxicological contexts.


Asunto(s)
Cladóceros , Contaminantes Químicos del Agua , Humanos , Animales , Calcio , Fluoroquinolonas/toxicidad , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad
2.
Drug Chem Toxicol ; : 1-12, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491899

RESUMEN

Ciprofloxacin (CFX) and ofloxacin (OFX) are commonly found as residual contaminants in aquatic environments, posing potential risks to various species. To ensure the safety of aquatic wildlife, it is essential to determine the toxicity of these antibiotics and establish appropriate concentration limits. Additionally, in (eco)toxicological studies, addressing the issue of multiple hypothesis testing through p-value adjustments is crucial for robust decision-making. In this study, we assessed the no observed adverse effect concentration (NOAEC) of CFX and OFX on Moina macrocopa across a concentration range of 0-400 µg L-1. Furthermore, we investigated multiple p-value adjustments to determine the NOAECs. Our analysis yielded consistent results across seven different p-value adjustments, indicating NOAECs of 100 µg CFX L-1 for age at first reproduction and 200 µg CFX L-1 for fertility. For OFX treatment, a NOAEC of 400 µg L-1 was observed for both biomarkers. However, further investigation is required to establish the NOAEC of OFX at higher concentrations with greater certainty. Our findings demonstrate that CFX exhibits higher toxicity compared to OFX, consistent with previous research. Moreover, this study highlights the differential performance of p-value adjustment methods in terms of maintaining statistical power while controlling the multiplicity problem, and their practical applicability. The study emphasizes the low NOAECs for these antibiotics in the zooplanktonic group, highlighting their significant risks to ecological and environmental safety. Additionally, our investigation of p-value adjustment approaches contributes to a deeper understanding of their performance characteristics, enabling (eco)toxicologists to select appropriate methods based on their specific needs and priorities.

3.
Sci Total Environ ; 829: 154585, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35306083

RESUMEN

Antibiotics, widely known as major environmental xenobiotics, are increasingly being released into ecosystems due to their essential functions in human health and production. During the COVID-19 pandemic waves, antibiotic use increases remarkably in treating bacterial coinfections. Antibiotics were initially expected only to affect prokaryotes, but recent research has shown that they can disturb the biological systems of eukaryotes, especially vulnerable aquatic creatures, through both direct and indirect processes. However, their toxicity to the freshwater cladoceran Simocephalus vetulus, an essential link in the aquatic food web, has never been evaluated. The effects of four fluoroquinolones (ciprofloxacin: CFX, ofloxacin: OFX, gatifloxacin: GFX, delafloxacin: DFX), tetracycline (TET), and a mixture of these medicines (MIX) on S. vetulus thoracic limb rate (TLR) were examined in this study. After S. vetulus was exposed to 20 and 40 mg GFX L-1, 90% and 100% mortality rates were recorded. At 2.5-10 mg L-1, GFX dramatically lowered the TLR of S. vetulus, resulting in a median effective concentration of 9.69 mg L-1. TLRs increased when the organisms were exposed to 10-40 mg L-1 of CFX and 1.25-40 mg L-1 of OFX. However, DFX and TET exposures did not affect TLRs. Exposure to MIX reduced TLR only at 40 mg L-1, suggesting an antagonistic interaction among the five pharmaceuticals. This study demonstrated that S. vetulus physiological responses to antibiotics, even in the same class, are complex and elusive. Beyond a common additive concentration principle, the antagonistic interaction of antibiotic mixture indicates a high level of uncertainty in terms of ecological dangers. We initially introduce S. vetulus to ecotoxicological studies of antibiotics, presenting the species as a low-cost model for physiological investigations of environmental xenobiotics.


Asunto(s)
COVID-19 , Cladóceros , Contaminantes Químicos del Agua , Animales , Antibacterianos/toxicidad , Cladóceros/fisiología , Ecosistema , Humanos , Pandemias , Contaminantes Químicos del Agua/toxicidad , Xenobióticos
4.
Environ Pollut ; 291: 118095, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34537598

RESUMEN

Ciprofloxacin (CFX) and ofloxacin (OFX) are two of the most often used fluoroquinolone antibiotics, and their residues are found in large amounts in various aquatic settings. However, the toxicity tests of CFX using eukaryotic organisms such as Daphnia magna are inadequate, and the test result of OFX is currently unknown. Therefore, the chronic toxicity test for D. magna was performed during 42 days under exposure to CFX and OFX concentrations of 50, 500, and 5000 µg L-1. All exposure conditions did not cause mortality for D. magna. CFX exposure at 500 µg L-1 resulted in an earlier oogenesis date and increased brood size in the second birth. The Poisson-based generalized linear mixed-effects model revealed that the reduction of fertility was statistically significant for the CFX and OFX exposures at 5000 µg L-1. On the other hand, the production of dead eggs as offspring degradation was also found significantly as maternal D. magna exposed to antibiotics at 5000 µg L-1. In addition, following long-term exposure to antibiotics, maternal adaptation to antibiotics was established for offspring deterioration and fertility. However, the OFX exposure showed that the fertility-suppressed effects continued for a longer period than the CFX exposure. Although no rational explanation has yet been given for the more substantial effect of OFX on reducing fertility than CFX, molecular cell biology and symbiotic microbial flora derived from previous studies could explain our ecotoxicological results. This study is the first report for the OFX chronic toxicities on D. magna by comparing it to the toxicity of CFX. Our study contributes to guiding the future impact assessment of fluoroquinolone antibiotic pollution on ecosystems, including the need for new statistical methods in ecotoxicological studies.


Asunto(s)
Daphnia , Contaminantes Químicos del Agua , Animales , Ciprofloxacina/toxicidad , Ecosistema , Ecotoxicología , Ofloxacino/toxicidad , Reproducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Vet World ; 13(8): 1679-1684, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33061245

RESUMEN

BACKGROUND AND AIM: Clostridium perfringens can cause enteritis in ostriches. The toxin release is believed to play a major role in determining pathogenesis properties of these pathogenic bacteria. This study was conducted to isolate and characterize C. perfringens strains from ostriches in Vietnam for identifying if particular virulence factors of these pathogenic bacteria are associated with enteritis progress in ostriches. MATERIALS AND METHODS: The prevalence of cpa, cpb, iA, etx, cpe, and cpb2 genes among C. perfringens isolates was determined by a multiplex polymerase chain reaction (PCR) method. The NetB toxin-encoding gene was detected by PCR and then sequenced to observe their variation. The expression of NetB toxin was checked by SDS-PAGE. RESULTS: A total of 116 C. perfringens isolates were obtained from 318 fecal samples and 105 intestinal organs. Of 80 isolates from fecal samples, 33 isolates were from healthy and 47 isolates were from diseased ostriches. The results of multiplex PCR showed that all 116 C. perfringens strains from healthy and enteric disordered ostriches were positive for the alpha toxin-encoding gene (cpa). The cpe and cpb2 genes were found in only one and five diseased ostriches, respectively. The netB gene was detected in 1/33 (3.03%) C. perfringens isolates from healthy ostriches, in 8/47 (17.05%) isolates from feces, and in 7/36 (19.44%) intestinal contents of diseased ostriches. The full-length sequences of 5 out of 15 netB-positive isolates from diseased ostriches showed 100% identity to each other as well as to the netB sequences available in GenBank. All of these five isolates produced NetB toxin in vitro. CONCLUSION: Type A is the most prevalent among C. perfringens isolates from ostriches in Vietnam. Especially, the study provides data emphasizing the role of NetB toxin in causing necrotic enteritis by C. perfringens in ostriches.

6.
J Vet Sci ; 12(2): 159-64, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21586875

RESUMEN

This study was conducted to determine the prevalence and characteristics of pathogenic Escherichia (E.) coli strains from diarrheic calves in Vietnam. A total of 345 E. coli isolates obtained from 322 diarrheic calves were subjected to PCR and multiplex PCR for detection of the f5, f41, f17, eae, sta, lt, stx1, and stx2 genes. Of the 345 isolates, 108 (31.3%) carried at least one fimbrial gene. Of these 108 isolates, 50 carried genes for Shiga toxin and one possessed genes for both enterotoxin and Shiga toxin. The eae gene was found in 34 isolates (9.8%), 23 of which also carried stx genes. The Shiga toxin genes were detected in 177 isolates (51.3%) and the number of strains that carried stx1, stx2 and stx1/stx2 were 46, 73 and 58, respectively. Among 177 Shiga toxin-producing E. coli isolates, 89 carried the ehxA gene and 87 possessed the saa gene. Further characterization of the stx subtypes showed that among 104 stx1-positive isolates, 58 were the stx1c variant and 46 were the stx1 variant. Of the 131 stx2-positive strains, 48 were stx2, 48 were stx2c, 11 were stx2d, 17 were stx2g, and seven were stx2c/stx2g subtypes. The serogroups most prevalent among the 345 isolates were O15, O20, O103 and O157.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Diarrea/veterinaria , Infecciones por Escherichia coli/veterinaria , Escherichia coli/aislamiento & purificación , Factores de Virulencia/genética , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , ADN Bacteriano/química , ADN Bacteriano/genética , Diarrea/epidemiología , Diarrea/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Fimbrias Bacterianas/genética , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo de Longitud del Fragmento de Restricción , Vietnam/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...