Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Environ Res ; 252(Pt 4): 119143, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38751000

RESUMEN

In this study, biochar derived from chestnut shells was synthesized through pyrolysis at varying temperatures from 300 °C to 900 °C. The study unveiled that the pyrolysis temperature is pivotal in defining the physical and chemical attributes of biochar, notably its adsorption capabilities and its role in activating peracetic acid (PAA) for the efficient removal of acetaminophen (APAP) from aquatic environments. Notably, the biochar processed at 900 °C, referred to as CN900, demonstrated an exceptional adsorption efficiency of 55.8 mg g-1, significantly outperforming its counterparts produced at lower temperatures (CN300, CN500, and CN700). This enhanced performance of CN900 is attributed to its increased surface area, improved micro-porosity, and a greater abundance of oxygen-containing functional groups, which are a consequence of the elevated pyrolysis temperature. These oxygen-rich functional groups, such as carbonyls, play a crucial role in facilitating the decomposition of the O-O bond in PAA, leading to the generation of reactive oxygen species (ROS) through electron transfer mechanisms. This investigation contributes to the development of sustainable and cost-effective materials for water purification, underscoring the potential of chestnut shell-derived biochar as an efficient adsorbent and catalyst for PAA activation, thereby offering a viable solution for environmental cleanup efforts.

2.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739798

RESUMEN

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Asunto(s)
Péptidos , Plasmodium falciparum , Proteínas Protozoarias , Ubiquitina Tiolesterasa , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/farmacología , Antimaláricos/química , Ubiquitina/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico
3.
Environ Pollut ; 350: 123970, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636839

RESUMEN

This study presents the synthesis of a novel composite catalyst, ZIF-67, doped on sodium bicarbonate-modified biochar derived from kumquat peels (ZIF-67@KSB3), for the enhanced activation of peracetic acid (PAA) in the degradation of acetaminophen (APAP) in aqueous solutions. The composite demonstrated a high degradation efficiency, achieving 94.3% elimination of APAP at an optimal condition of 200 mg L-1 catalyst dosage and 0.4 mM PAA concentration at pH 7. The degradation mechanism was elucidated, revealing that superoxide anion (O2•-) played a dominant role, while singlet oxygen (1O2) and alkoxyl radicals (R-O•) also contributed significantly. The degradation pathways of APAP were proposed based on LC-MS analyses and molecular electrostatic potential calculations, identifying three primary routes of transformation. Stability tests confirmed that the ZIF-67@KSB3 catalyst retained an 86% efficiency in APAP removal after five successive cycles, underscoring its durability and potential for application in pharmaceutical wastewater treatment.


Asunto(s)
Acetaminofén , Carbón Orgánico , Ácido Peracético , Contaminantes Químicos del Agua , Zeolitas , Acetaminofén/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Zeolitas/química , Ácido Peracético/química , Prunus armeniaca/química , Imidazoles/química , Aguas Residuales/química , Catálisis , Eliminación de Residuos Líquidos/métodos
4.
Org Biomol Chem ; 22(19): 3871-3875, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38651649

RESUMEN

A cost-effective, practical, straightforward and scalable synthesis of α-pyrones via base- and sulfur-promoted annulation of phenylacetates and chalcones is reported. Generated in situ from the starting components by using dbu as a base catalyst, the Michael adducts underwent a smooth oxidative cyclization into 3,4,6-triaryl-2-pyranones upon heating with DABCO and sulfur in DMSO. Extension to malonate in place of phenylacetates led to 4,6-diaryl-2-pyranone-2-carboxylates.

5.
Sci Total Environ ; 926: 171793, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513854

RESUMEN

Due to global demand, millions of tons of plastics have been widely consumed, resulting in the widespread entry of vast amounts of microplastic particles into the environment. The presence of microplastics (MPs) in water supplies, including bottled water, has undergone systematic review, assessing the potential impacts of MPs on humans through exposure assessment. The main challenges associated with current technologies lie in their ability to effectively treat and completely remove MPs from drinking and supply water. While the risks posed by MPs upon entering the human body have not yet been fully revealed, there is a predicted certainty of negative impacts. This review encompasses a range of current technologies, spanning from basic to advanced treatments and varying in scale. However, given the frequent detection of MPs in drinking and bottled water, it becomes imperative to implement comprehensive management strategies to address this issue effectively. Consequently, integrating current technologies with management options such as life-cycle assessment, circular economy principles, and machine learning is crucial to eliminating this pervasive problem.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Abastecimiento de Agua
6.
Sci Signal ; 17(823): eabl5880, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349968

RESUMEN

The neuropeptide relaxin-3 is composed of an A chain and a B chain held together by disulfide bonds, and it modulates functions such as anxiety and food intake by binding to and activating its cognate receptor RXFP3, mainly through the B chain. Biased ligands of RXFP3 would help to determine the molecular mechanisms underlying the activation of G proteins and ß-arrestins downstream of RXFP3 that lead to such diverse functions. We showed that the i, i+4 stapled relaxin-3 B chains, 14s18 and d(1-7)14s18, were Gαi/o-biased agonists of RXFP3. These peptides did not induce recruitment of ß-arrestin1/2 to RXFP3 by GPCR kinases (GRKs), in contrast to relaxin-3, which enabled the GRK2/3-mediated recruitment of ß-arrestin1/2 to RXFP3. Relaxin-3 and the previously reported peptide 4 (an i, i+4 stapled relaxin-3 B chain) did not exhibit biased signaling. The staple linker of peptide 4 and parts of both the A chain and B chain of relaxin-3 interacted with extracellular loop 3 (ECL3) of RXFP3, moving it away from the binding pocket, suggesting that unbiased ligands promote a more open conformation of RXFP3. These findings highlight roles for the A chain and the N-terminal residues of the B chain of relaxin-3 in inducing conformational changes in RXFP3, which will help in designing selective biased ligands with improved therapeutic efficacy.


Asunto(s)
Relaxina , Relaxina/farmacología , Relaxina/química , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Unión al GTP/metabolismo , Dominios Proteicos , beta-Arrestinas/metabolismo
7.
Front Pediatr ; 12: 1165492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415210

RESUMEN

Background: Pathogenic variants in the IGHMBP2 gene are associated with two distinct autosomal recessive neuromuscular disorders: spinal muscular atrophy with respiratory distress type 1 (SMARD1; OMIM #604320) and Charcot-Marie-Tooth type 2S (CMT2S; OMIM #616155). SMARD1 is a severe and fatal condition characterized by infantile-onset respiratory distress, diaphragmatic palsy, and distal muscular weakness, while CMT2S follows a milder clinical course, with slowly progressive distal muscle weakness and sensory loss, without manifestations of respiratory disorder. Methods: Whole-exome sequencing of the IGHMBP2 gene was performed for eight Vietnamese patients with IGHMBP2-related neuromuscular disorders including five patients with SMARD1 and the others with CMT2S. Results: We identified one novel IGHMBP2 variant c.1574T > C (p.Leu525Pro) in a SMARD1 patient. Besides that, two patients shared the same pathogenic variants (c.1235 + 3A > G/c.1334A > C) but presented completely different clinical courses: one with SMARD1 who deceased at 8 months of age, the other with CMT2S was alive at 3 years old without any respiratory distress. Conclusion: This study is the first to report IGHMBP-2-related neuromuscular disorders in Vietnam. A novel IGHMBP2 variant c.1574T > C (p.Leu525Pro) expressing SMARD1 phenotype was detected. The presence of three patients with the same genotype but distinct clinical outcomes suggested the interaction of variants and other factors including relating modified genes in the mechanism of various phenotypes.

8.
BMC Health Serv Res ; 24(1): 86, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233921

RESUMEN

BACKGROUND: Dementia is a global public health priority. The World Health Organization adopted a Global Action Plan on Dementia, with dementia awareness a priority. This study examined the knowledge, attitudes, and self-confidence with skills required for providing dementia care among primary health care providers in Vietnam. METHODS: A cross-sectional study was conducted with 405 primary health care providers who worked at commune health stations and district health centers in eight provinces across Vietnam. RESULTS: The results showed that primary health care providers had poor knowledge and little confidence but more positive attitudes toward dementia care and management. CONCLUSIONS: The results suggest the training needs for building capacity amongst primary health care providers, which will be critical as Vietnam's population ages.


Asunto(s)
Demencia , Médicos , Humanos , Conocimientos, Actitudes y Práctica en Salud , Vietnam , Estudios Transversales , Atención Primaria de Salud , Demencia/terapia
9.
Org Biomol Chem ; 22(6): 1167-1171, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38226902

RESUMEN

Inexpensive sodium sulfide trihydrate was found to promote unprecedented 6e-regio-predefined redox condensation of o-nitroanilines with α-tetralones to benzo[a]phenazines. The method was also successfully extended to acetophenones and higher homologs as reducing partners to provide 2-phenylquinoxalines. Compared to traditional approaches toward benzo[a]phenazine and quinoxaline cores starting with o-phenylenediamines, the present strategy could afford these heterocycles with well-defined regiochemistry based on the structure of starting o-nitroanilines.

10.
Environ Res ; 247: 118227, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253192

RESUMEN

The current study aimed to assess the effectiveness of biochar formed from algae in the removal of Cr(VI) through the process of impregnating brown algae Sargassum hemiphyllum with KHCO3. The synthesis of KHCO3-activated biochar (KBAB-3), demonstrating remarkable adsorption capabilities for Cr(VI), was accomplished utilizing a mixture of brown algae and KHCO3 in a mass ratio of 1:3, followed by calcination at a temperature of 700 °C. Based on the empirical evidence, it can be observed that KBAB-3 shown a significant ability to adsorb Cr(VI) within a range of 60-160 mg g-1 across different environmental conditions. In addition, the KBAB-3 material demonstrated the advantageous characteristic of easy separation, allowing for the continued maintenance of a high efficiency in removing Cr(VI) even after undergoing numerous cycles of reuse. In conclusion, the application of KBAB-3, a novel adsorbent, exhibits considerable prospects for effective removal of Cr(VI) from diverse water sources in the near future.


Asunto(s)
Carbón Orgánico , Phaeophyceae , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Cromo/análisis , Agua , Cinética
11.
Chemistry ; 30(7): e202303703, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953668

RESUMEN

Thiourea derivatives are in-demand motifs in organic synthesis, medicinal chemistry and material science, yet redox methods for the synthesis that start from safe, simple, inexpensive and readily available feedstocks are scarce. In this article, we disclose the synthesis of these motifs using elemental sulfur and nitromethane as the starting materials. The method harnesses the multi-electron auto-redox property of nitromethane in the presence of sulfur and amines, delivering thiourea products without any added oxidant or reductant. Extension of this reaction to cyclizable amines and/or higher homologues of nitromethane led to a wide range of nitrogen heterocycles and thioamides. Operationally simple, the reactions are scalable, tolerate a wide range of functional groups, and can be employed for the direct functionalization of natural products. Mechanistically, the nitro group was found to act as an oxidant leaving group, being reduced to ammonia whereas sulfur, along with the role of a sulfur building block for the thiocarbonyl group, behaved as a complementary reductant, being oxidized to sulfate.

12.
J Mater Chem B ; 12(3): 678-690, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38116646

RESUMEN

The present study introduces Fe3O4-coated lapatinib-labeled 153Sm nanoparticles (denoted as Fe3O4@lapatinib-153Sm) as a promising avenue for advancing breast cancer treatment. The radiolabeled nanoparticles combine various attributes, offering enhanced therapeutic precision. The integration of lapatinib confers therapeutic effects and targeted delivery. The inherent magnetic characteristics of Fe3O4 nanoparticles contribute to improved imaging contrast and targeted localization. Incorporating the gamma-emitting 153Sm isotope permits single-photon emission computed tomography imaging and radiation dose evaluation, while its beta-emitting nature ensures targeted cancer cell eradication. The synthesis of Fe3O4@lapatinib-153Sm was meticulously optimized by investigating the effects of parameters on radiolabeling efficiency. Physicochemical attributes were scrutinized using several analytical techniques. In-depth in vivo assessment evaluated the biocompatibility, toxicity, and biodistribution in a murine model, illuminating clinical utility. Optimal conditions (153SmCl3 concentration of 10 mCi mL-1, pH 7.4, a reaction time of 30 min, and a temperature of 25 °C) achieved >99% labeling efficiency and radiochemical purity. The TEM analysis indicated that the diameter of Fe3O4@lapatinib-153Sm nanoparticles ranged from 10 to 40 nm. Vibrating-sample magnetometry verified their superparamagnetic behaviour with a saturation magnetization of 41.4 emu g-1. The synthesized radiopharmaceutical exhibited high sterility and in vitro stability. Acute toxicity studies showed the mild effects of Fe3O4@lapatinib-153Sm at a dose of 20 mCi kg-1, with no observed mortality. Notably, lesions from Fe3O4@lapatinib-153Sm use recovered naturally over time. Radiation doses below 20 mCi kg-1 were recommended for clinical trials. The biodistribution study in BT474 xenograft mice revealed rapid clearance of Fe3O4@lapatinib-153Sm within 48 h. Significant accumulation occurred in the liver, spleen, and tumor tissue, while minimal accumulation was found in other tissues. Future steps involve studying biocorona formation and therapeutic efficacy on tumour models, refining its clinical potential.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Animales , Ratones , Femenino , Lapatinib , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Distribución Tisular , Control de Calidad
13.
J Korean Med Sci ; 38(49): e410, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111281

RESUMEN

Geographical and racial factors constitute important distinctions between Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C), but no study has been conducted in Vietnam. Forty-one children with KD from January 2018 to July 2020 and 42 with KD/MIS-C from August 2020 to December 2022 were included in this study. Of the patients, 52.3% were aged between 12 and 35 months. Only two were aged over 5 years, and both were belong to the KD/MIS-C group. A 59.5% of the patients were male. Apart from fever, all symptoms tended to be more frequent in patients with KD/MIS-C. The prevalence of diffuse skin rash, hand and foot edema or erythema and gastrointestinal signs was significantly higher in patients hospitalized with KD/MIS-C. There was no significant difference in laboratory findings between the two groups. Coronary artery dilation was more frequently observed in patients with KD/MIS-C compared to those with KD (40.5% vs. 14.6%, P = 0.009).


Asunto(s)
COVID-19 , Exantema , Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Masculino , Lactante , Preescolar , Femenino , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Vasos Coronarios , Exantema/etiología
14.
Sci Rep ; 13(1): 18753, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907691

RESUMEN

This study aims to provide in vitro and in vivo data to support the utilization of antinuclear antibodies (ANAs) as novel tools for the diagnosis and treatment of prostate cancers. The hematological, biochemical, and histological toxicities of ANAs were assessed at the doses of 5 and 50 µg per mouse. Radiolabeling study was then conducted with ANA and 131I using the chloramine T method, and the biodistribution and treatment efficacy were subsequently investigated in a PC3 xenograft model. No changes in clinical behavior or signs of intoxication, necrosis, or malignancy were observed in ANA-treated mice. 131I-ANA was obtained in very high yield and radiochemical purity, at 94.97 ± 0.98% and 98.56 ± 0.29%, respectively. They achieved immunoreactivity fraction of 0.841 ± 0.17% with PC-3 cells. Levels of radiolabeled ANAs were 1.15-10.14 times higher in tumor tissues than in other examined organs at 24 h post-injection. The tumor growth inhibition rates were 28.33 ± 5.01% in PC3 xenografts mice treated with 131I-ANAs compared with controls and a nearly twofold improvement in median survival was observed. These results demonstrate that radioimmunotherapy of radiolabeled natural ANAs may be an effective treatment for prostate tumors.


Asunto(s)
Radioisótopos de Yodo , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Radioisótopos de Yodo/uso terapéutico , Anticuerpos Antinucleares , Xenoinjertos , Distribución Tisular , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral
15.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38018912

RESUMEN

Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.


Asunto(s)
Mutación Missense , Neoplasias , Humanos , Proteína p53 Supresora de Tumor/genética , Mutación , Neoplasias/genética , Aprendizaje Automático
16.
Org Lett ; 25(39): 7225-7229, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37738043

RESUMEN

The oxidative amination of alkynes typically requires transition metal catalysts and strong oxidants. Herein, we alternatively utilize DABCO as a sulfur-activating catalyst to achieve the sulfurative 1,2-diamination of phenylacetylenes with elemental sulfur and o-phenylenediamines. DMSO was found to be particularly suitable for use as a terminal oxidant for this three-component process. A mechanistic study has shown that this cascade reaction is triggered by the addition of active sulfur species to the triple bond of phenylacetylenes.

17.
Medicina (Kaunas) ; 59(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37763706

RESUMEN

Background and Objectives: Gestational diabetes mellitus (GDM) is a type of diabetes that develops during pregnancy and affects approximately 10% of pregnant women worldwide. Understanding the impact of lifestyle changes on glycemic control in GDM is important for improving maternal and fetal outcomes and reducing the risk of diabetes in both the mother and child. The aim of this study is to evaluate the effectiveness as well as the factors affecting glycemic control by lifestyle changes in pregnant women with GDM. Materials and Methods: A descriptive cross-sectional study was conducted at three hospitals in the Thai Binh Province from June 2021 to May 2022. All pregnant women at 24-28 weeks of gestation, aged 18 years or older, were enrolled. GDM was diagnosed according to the guidelines of the International Association of the Diabetes and Pregnancy Study Groups. Lifestyle changes including diet and physical exercise were carried out for two weeks. The main outcome measured was successful glycemic control according to the 2018 ADA Recommendations for the Management and Treatment of GDM. Results: 1035 women were included and 20.2% diagnosed with GDM. After two weeks of lifestyle change intervention, 82.6% of the pregnant women with GDM had successful glycemic control. Pregnant women aged under 35 years had a 3.2 times higher rate of gestational glycemic control than those older than 35 (aOR = 3.22, p-value = 0.004). Women with a pre-pregnancy BMI of less than 25 had a higher rate of gestational glycemic control than those with a BMI of over 25 (aOR = 10.84, p-value < 0.001). Compared to women who had all three diagnostic criteria for gestational diabetes, those with two diagnostic criteria and one criterion were 3.8 times and 3 times more likely to have successful blood sugar control (aOR = 3.78, p-value = 0.01 and aOR = 3.03, p-value = 0.03, respectively). Conclusion: Lifestyle changes can be an effective measure for achieving glycemic control in women with GDM. Healthcare providers should consider individualized treatment plans based on the specific needs of each patient.

18.
Environ Res ; 238(Pt 2): 117259, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37775006

RESUMEN

Nano-heterojunction photocatalytic can operate removal of pollutants, which is basic for the sustainable development of a clean environment. Herein, we propose a novel MoS2/SnO2 (MS) S-scheme heterojunction by a facile hydrothermal process, which is cheap, easily available, highly visible-light response, and good stability. The MS nano-heterojunction suggested superior performance with the photocatalytic degradation of 97.6% within 100 min for ciprofloxacin (CIP) removal, which was 5.74 and 4.88 folds higher than that of pristine MoS2 and SnO2, respectively. The fabricated MS photocatalysts displayed outstanding photocatalytic efficiency toward Cr (VI) reduction. The removal capability of Cr (VI) reached up to 92.5% within 60 min. The photodegradation efficiency was 5.2 folds that of pristine MoS2. In addition, the antibacterial performance approximately approached 100% for E. coli within 10 min, which was more apparent than the others. A series of excellent results implied that MS nano-heterojunction had a high ultraviolet and visible light absorbance, larger specific surface area, outstanding electron-hole pairs migration and higher capability of photo-response electrons and holes separation rate. This system offers a novel window into the evolution of nano-heterojunction for wastewater treatment and solar energy harvesting applications.


Asunto(s)
Metales Pesados , Molibdeno , Antibacterianos , Escherichia coli , Luz
19.
Environ Pollut ; 337: 122571, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37722478

RESUMEN

Biochar usage in soil remediation has turned out to be an enticing topic recently. Biochar, a product formed by pyrolysis of organic waste, which is rich in carbon, has the aptitude to ameliorate climate change by sequestering carbon while also enhancing soil quality and crop yields. Two-edged implications of biochar on soil amendment are still being discussed yet, clarity on the long-term implications of biochar on soil health and the environment is not yet achieved. As a result, it is crucial to systematically uncover the pertinent information regarding biochar remediation, as this can serve as a roadmap for future research on using biochar to remediate contaminated soils in mining regions. This review endeavors to bring forth run thoroughly the latest state of research on the use of biochar in soil remediation, along with its potential benefits, limitations, challenges, and future scope. By synthesizing existing literature on biochar soil remediation, this review aims to provide insights into the potential of biochar as a sustainable solution for soil remediation. Specifically, this review will highlight the key factors that influence the effectiveness of biochar for soil remediation and the potential risks associated with its use, as well as the current gaps in knowledge and future research directions.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Carbón Orgánico
20.
Org Lett ; 25(34): 6419-6423, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606266

RESUMEN

Furan is an important heterocyclic scaffold in natural product, bioorganic, and medicinal chemistry as well as in materials science. The system S8/DABCO/DMSO was found to efficiently mediate the oxidative cyclization of 1,2,3,5-tetraarylpentan-1-ones A, which were obtained in situ as the Michael adducts of chalcones 1 and deoxybenzoins 2, to furan 3. The strategy provided convenient and direct access to tetrasubstituted furans 3 from readily available starting materials with high functional group tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA