Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Pharm Res ; 47(4): 325-340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561494

RESUMEN

Sialyllactoses (SLs) primarily include sialylated human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). First, the safety assessment of 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) revealed low toxicity in various animal models and human participants. SLs constitute a unique milk component, highlighting the essential nutrients and bioactive components crucial for infant development, along with numerous associated health benefits for various diseases. This review explores the safety, biosynthesis, and potential biological effects of SLs, with a specific focus on their influence across various physiological systems, including the gastrointestinal system, immune disorders, rare genetic disorders (such as GNE myopathy), cancers, neurological disorders, cardiovascular diseases, diverse cancers, and viral infections, thus indicating their therapeutic potential.


Asunto(s)
Lactosa/análogos & derivados , Leche Humana , Leche , Oligosacáridos , Humanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Animales , Leche/química , Leche Humana/química , Leche Humana/metabolismo , Bovinos
2.
Life Sci ; 338: 122410, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191050

RESUMEN

AIM: Endothelial hyperpermeability is an early stage of endothelial dysfunction associated with the progression and development of atherosclerosis. 3'-Sialyllactose (3'-SL) is the most abundant compound in human milk oligosaccharides, and it has the potential to regulate endothelial dysfunction. This study investigated the beneficial effects of 3'-SL on lipopolysaccharide (LPS)-induced endothelial dysfunction in vitro and in vivo. MAIN METHODS: We established LPS-induced endothelial dysfunction models in both cultured bovine aortic endothelial cells (BAECs) and mouse models to determine the effects of 3'-SL. Western blotting, qRT-PCR analysis, immunofluorescence staining, and en face staining were employed to clarify underlying mechanisms. Superoxide production was measured by 2',7'-dichlorofluorescin diacetate, and dihydroethidium staining. KEY FINDINGS: LPS significantly decreased cell viability, whereas 3'-SL treatment mitigated these effects via inhibiting ERK1/2 activation. Mechanistically, 3'-SL ameliorated LPS-induced ROS accumulation leading to ERK1/2 activation-mediated STAT1 phosphorylation and subsequent inhibition of downstream transcriptional target genes, including VCAM-1, TNF-α, IL-1ß, and MCP-1. Interestingly, LPS-induced ERK1/2/STAT1 activation leads to the HMGB1 release from the nucleus into the extracellular space, where it binds to RAGE, while 3'-SL suppressed EC hyperpermeability by suppressing the HMGB1/RAGE axis. This interaction also led to VE-cadherin endothelial junction disassembly and endothelial cell monolayer disruption through ERK1/2/STAT1 modulation. In mouse endothelium, en face staining revealed that 3'-SL abolished LPS-stimulated ROS production and VCAM-1 overexpression. SIGNIFICANCE: Our findings suggest that 3'-SL inhibits LPS-induced endothelial hyperpermeability by suppressing superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Therefore, 3'-SL may be a potential therapeutic agent for preventing the progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína HMGB1 , Oligosacáridos , Animales , Bovinos , Ratones , Aterosclerosis/metabolismo , Proteína HMGB1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Sistema de Señalización de MAP Quinasas , Oligosacáridos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/metabolismo , Superóxidos/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Receptor para Productos Finales de Glicación Avanzada/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo
3.
Arch Pharm Res ; 45(11): 836-848, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36401777

RESUMEN

Disruption of the endothelial barrier function and reduction in cell migration leads to endothelial dysfunction. One of the most abundant human milk oligosaccharides, 6'-sialylactose (6'-SL), is reported to exert various biological functions related to inflammatory responses. In this study, we evaluated the effects of 6'-SL on lipopolysaccharide (LPS)-induced inflammation caused by endothelial barrier damage. Our results showed that LPS at 500 ng/mL strongly not only abolished cell migration but also hyperactivated MAPK and NF-κB pathways. 6'-SL suppressed LPS-induced endothelial inflammation via ERK1/2, p38, and JNK MAPK pathways. 6'-SL supported endothelial junctions by upregulating PECAM-1 expression and mRNA levels of tight junctions, such as ZO-1 and occludin, which were downregulated by LPS stimulation. It significantly inhibited the nuclear translocation of NF-κB, along with the downregulation of inflammatory cytokines, including TNF-α, IL-1ß, MCP-1, VCAM-1, and ICAM-1. Furthermore, 6'-SL abolished NF-κB-mediated STAT3 in controlling endothelial migration and hyperpermeability via downregulating STAT3 activation and nuclear translocation. Finally, LPS induced over-expression of VCAM-1 and ZO-1 disassembly in both atheroprone and atheroprotective areas of mouse aorta, which were reversed by 6'-SL treatment. Altogether, our findings suggest that 6'-SL is a potent therapeutic agent for modulating inflammatory responses and endothelial hyperpermeability.


Asunto(s)
Células Endoteliales , Lipopolisacáridos , Humanos , Animales , Ratones , Lipopolisacáridos/toxicidad , Molécula 1 de Adhesión Celular Vascular , FN-kappa B , Permeabilidad , Inflamación/inducido químicamente
4.
Life Sci ; 309: 120973, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36150463

RESUMEN

AIM: Endothelial cell (EC) dysfunction initiates atherosclerosis by inducing inflammatory cytokines and adhesion molecules. Herein, we investigated the role of ginsenoside Rh1 (Rh1) in lipopolysaccharide (LPS)-induced EC dysfunction. MAIN METHODS: The inhibitory effect of Rh1 on LPS binding to toll-like receptor 2 (TLR2) or TLR4 was evaluated using an immunofluorescence (IF) assay. Annexin V and cleaved caspase-3-positive EC apoptosis were evaluated by flow cytometry and IF assay. Western blotting and quantitative reverse transcription-PCR were performed to clarify underlying molecular mechanisms. In vivo model, effect of Rh1 on EC dysfunction was evaluated by using en face IF assay on aortas isolated C57BL/6 mice. KEY FINDING: LPS (500 ng/mL) activated inflammatory signaling pathways, including ERK1/2, STAT3, and NF-κB. Interestingly, Rh1 significantly abolished the binding of LPS to TLR2 and TLR4. Consistently, Rh1 inhibited LPS-induced NF-κB activation and its downstream molecules, including inflammatory cytokines and adhesion molecules. Furthermore, Rh1 alleviated LPS-induced downregulation of eNOS promoter activity. Notably, inactivation of eNOS by 50 µM L-NAME significantly increased NF-κB promoter activity. In addition, Rh1 abolished LPS-mediated cell cycle arrest and EC apoptosis by inhibiting endoplasmic reticulum stress via PERK/CHOP/ERO1-α signaling pathway. Consistent with in vitro experimental data, Rh1 effectively suppressed LPS-induced VCAM-1 and CHOP expression and rescuing LPS-destroyed tight junctions between ECs as indicated in ZO-1 expression on mice aorta. SIGNIFICANCE: Rh1 suppresses LPS-induced EC inflammation and apoptosis by inhibiting STAT3/NF-κB and endoplasmic reticulum stress signaling pathways, mediated by blocking LPS binding-to TLR2 and TLR4. Consistently, Rh1 effectively reduced EC dysfunction in vivo model.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 2/metabolismo , Células Endoteliales/metabolismo , Caspasa 3/metabolismo , Receptor Toll-Like 4/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacología , NG-Nitroarginina Metil Éster/farmacología , Ratones Endogámicos C57BL , Transducción de Señal , Citocinas/metabolismo
5.
Arch Pharm Res ; 45(9): 658-670, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36070173

RESUMEN

Excessive production and migration of vascular smooth muscle cells (VSMCs) are associated with vascular remodeling that causes vascular diseases, such as restenosis and hypertension. Angiotensin II (Ang II) stimulation is a key factor in inducing abnormal VSMC function. This study aimed to investigate the effects of 6'-sialyllactose (6'SL), a human milk oligosaccharide, on Ang II-stimulated cell proliferation, migration and osteogenic switching in rat aortic smooth muscle cells (RASMCs) and human aortic smooth muscle cells (HASMCs). Compared with the control group, Ang II increased cell proliferation by activating MAPKs, including ERK1/2/p90RSK/Akt/mTOR and JNK pathways. However, 6'SL reversed Ang II-stimulated cell proliferation and the ERK1/2/p90RSK/Akt/mTOR pathways in RASMCs and HASMCs. Moreover, 6'SL suppressed Ang II-stimulated cell cycle progression from G0/G1 to S and G2/M phases in RASMCs. Furthermore, 6'SL effectively inhibited cell migration by downregulating NF-κB-mediated MMP2/9 and VCAM-1 expression levels. Interestingly, in RASMCs, 6'SL attenuated Ang II-induced osteogenic switching by reducing the production of p90RSK-mediated c-fos and JNK-mediated c-jun, leading to the downregulation of AP-1-mediated osteopontin production. Taken together, our data suggest that 6'SL inhibits Ang II-induced VSMC proliferation and migration by abolishing the ERK1/2/p90RSK-mediated Akt and NF-κB signaling pathways, respectively, and osteogenic switching by suppressing p90RSK- and JNK-mediated AP-1 activity.


Asunto(s)
Angiotensina II , Músculo Liso Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos , Lactosa/análogos & derivados , Lactosa/metabolismo , Lactosa/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso , FN-kappa B/metabolismo , Osteopontina/metabolismo , Osteopontina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/farmacología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/farmacología
6.
Phytomedicine ; 85: 153549, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33819767

RESUMEN

BACKGROUND: Ginsenoside-Rg2 (G-Rg2) is a protopanaxatriol-type ginsenoside isolated from ginseng. It has been found to exhibit various pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. PURPOSE: This study aimed to investigate the anticancer effects of G-Rg2 on estrogen receptor-positive MCF-7 breast cancer (BC) cells, and the underlying mechanisms involving in reactive oxygen species (ROS) production. STUDY DESIGN/METHODS: Cell viability, cell cycle distribution, apoptosis, and ROS production were measured following exposure to G-Rg2. The protein expression levels of p-ERK1/2, p-Akt, PARP, p-Rb, cyclin D1, CDK6, and p-AMPK were quantified using western blot analysis. The in vivo activity of G-Rg2 was assessed in a xenograft model. Immunohistochemistry staining for p-Rb and p-AMPK was performed in tumor tissues. RESULTS: G-Rg2 significantly decreased cell viability but increased cell apoptosis. In MCF-7 cells, G-Rg2 increased ROS production by inhibiting ERK1/2 and Akt activation. G-Rg2-induced ROS induced G0/G1 cell cycle arrest and AMPK phosphorylation. In the xenograft model, the 5 mg/kg G-Rg2-treated group showed decreased tumor volume and weight, similar to the 5 mg/kg 4-OHT-treated group, compared to the control group. Immunohistochemistry staining showed that G-Rg2 treatment decreased Rb phosphorylation, while increasing AMPK phosphorylation in tumor tissues. CONCLUSION: G-Rg2 has potential anticancer effects by increasing the ROS-AMPK signaling pathway and inhibiting ERK1/2 and Akt activation-mediated cell proliferation and cell cycle progression in MCF-7 BC cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo Celular/efectos de los fármacos , Ginsenósidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Sci Total Environ ; 784: 147135, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33894605

RESUMEN

This study investigated the environmental burdens concerning the recycling/recovery process of a wastewater treatment plant's construction material waste and biogas. Detailed data inventories of case studies were employed in several scenarios to explore the role of end-of-life treatment methods. The ReCiPe 2016 and the Greenhouse gas Protocol life cycle impact methods were conducted to measure the impact categories. The construction and demolition phases were considered for recycling potential assessment, while the operational phase was examined for assessing the advantages of energy recovery. Metal and concrete recycling show environmental benefits. Increasing the reprocessing rate requires more water consumption but results in: firstly, a decrease of 18.8% in total damage; secondly, reduces problematic mineral scarcity by 3.9%; and thirdly, a shortfall in fossil fuels amounting to 11.6%. Recycling concrete helps to reduce the amount of GHG emissions 1.4-fold. Different biogas treatment methods contribute to various outcomes. Biogas utilization for on-site energy purposes has more advantages than flaring and offsite consumption. Electricity and heat generation originating from biogas can provide 70% of the energy requirement and replace 100% natural gas usage. Biomethane production from biogas requires extreme power and more resources. Meanwhile, producing heat and electricity can offset 102.9 g of fossil CO2, and manufacturing biomethane contributes the equivalent of 101.2 g of fossil fuel-derived CO2. Reducing 10% of recovered electricity creation could rise 19.19% global warming indicator of the wastewater treatment plant.

8.
Arch Pharm Res ; 44(2): 241-252, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33537886

RESUMEN

Systemic or hepatic inflammation is caused by intraperitoneal application of lipopolysaccharide (LPS). In this study, we investigated anti-inflammatory and antioxidant properties of combination of ginsenoside-Rg2 (G-Rg2) and -Rh1 (G-Rh1) on liver function under LPS challenging. We first confirmed that G-Rg2 and -Rh1 at 100 µg/ml did not show cytotoxicity in HepG2 cells. G-Rg2 and -Rh1 treatment significantly inhibited activation of STAT3 and TAK1, and inflammatory factors including iNOS, TNF-α, and IL-1ß in peritoneal macrophages. In HepG2 cells, G-Rg2 and -Rh1 treatment inhibited activation of STAT3 and TAK1/c-Jun N-terminal kinase, and down-regulated nuclear translocation of NF-κB transcription factor. In addition, LPS-induced mitochondrial dysfunction was restored by treatment with G-Rg2 and -Rh1. Interestingly, pretreatment with G-Rg2 and -Rh1 effectively inhibited mitochondrial damage-mediated ROS production induced by LPS stimulation, and alterations of Nrf2 nuclear translocation and ARE promotor activity were involved in G-Rg2 and -Rh1 effects on balancing ROS levels. In liver tissues of LPS-treated mice, G-Rg2 and -Rh1 treatment protected liver damages and increased Nrf2 expression while reducing CD45 expression. Taken together, G-Rg2 and -Rh1 exerts a protective effect on liver function by increasing antioxidant through Nrf2 and anti-inflammatory activities through STAT3/TAK1 and NF-κB signaling pathways in liver cells and macrophages.


Asunto(s)
Ginsenósidos/administración & dosificación , Hígado/efectos de los fármacos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
Arch Pharm Res ; 43(8): 773-787, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32839835

RESUMEN

Breast cancer is the most common cause of cancer-related deaths among women worldwide. Thus, the development of new and effective low-toxicity drugs is vital. The specific characteristics of breast cancer have allowed for the development of targeted therapy towards each breast cancer subtype. Nevertheless, increasing drug resistance is displayed by the changing phenotype and microenvironments of the tumor through mutation or dysregulation of various mechanisms. Recently, emerging data on the therapeutic potential of biocompounds isolated from ginseng have been reported. Therefore, in this review, various roles of ginsenosides in the treatment of breast cancer, including apoptosis, autophagy, metastasis, epithelial-mesenchymal transition, epigenetic changes, combination therapy, and drug delivery system, have been discussed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ginsenósidos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Ginsenósidos/administración & dosificación , Humanos , Metástasis de la Neoplasia
10.
Alzheimers Dement (N Y) ; 6(1): e12063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33532542

RESUMEN

INTRODUCTION: Low- and middle-income countries have rapidly increasing numbers of people with dementia, yet little evidence on family caregiving interventions. We tested the preliminary efficacy and feasibility of a family caregiving intervention in northern Vietnam. METHODS: Nine clusters comprising 60 family caregivers were randomized to a culturally adapted version of a four- to six-session, multicomponent intervention delivered in-home over 2 to 3 months, or enhanced control. Eligible caregivers were ≥18 years of age and scored ≥6 on the Zarit Burden Inventory (ZBI). RESULTS: Fifty-one caregivers (85%) completed the study. Using analysis of covariance with 3-month assessment as the outcome and baseline assessment as a covariate, intervention group caregivers had an average ZBI (primary outcome) score 1.2 standard deviation (SD) lower (P = .02) and Patient Health Questionnaire-4 (psychological distress) score 0.7 SD lower (P = .03) than controls. DISCUSSION: In the first study of its kind in Vietnam, a culturally adapted, manualized, family caregiver intervention was both efficacious and feasible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...