Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(40): 37540-37548, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841154

RESUMEN

Aspergillus flavus (A. flavus) and Aspergillus niger (A. niger) mainly spread through airborne fungal spores. An effective control to impede the dissemination of the spores of Aspergillus in the air affecting the environment and food was carried out. This study focuses on the sustainable rice husk-extracted lignin, nanolignin, lignin/n-lignin capped silver nanoparticles used for fungal growth inhibition. These biomaterials inhibit the growth of fungi by altering the permeability of cell membranes and influencing intracellular biosynthesis. The antifungal indexes for A. flavus and A. niger on day 5 at a concentration of 2000 µg/100 µL are 50.8 and 43.6%, respectively. The results demonstrate that the hybrid biomaterials effectively prevent the growth or generation of fungal spores. The findings of this research hold significant implications for future investigations focused on mitigating the dissemination of Aspergillus during the cultivation of agricultural products or in the process of assuring agricultural product management, such as peanuts and onions.

2.
ACS Appl Mater Interfaces ; 15(25): 30742-30755, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307299

RESUMEN

Full comprehension of the pyrolysis of polymer materials is crucial for the design and application of thermal protection systems; however, it involves complex phenomena at different spatial and temporal scales. To bridge the gap between the abundant atomistic simulations and continuum modeling in the literature, we perform a novel mesoscale study of the pyrolysis process using coarse-grained molecular dynamics (CG MD) simulations. Polyethylene (PE) consisting of united atoms including implicit hydrogen is considered a model polymer, and the configurational change of PE in thermal degradation is modeled by applying the bond-breaking phenomenon based on bond energy or bond length criteria. A cook-off simulation is implemented to optimize the heuristic protocol of bond dissociation by comparing the reaction products with a ReaxFF simulation. The aerobic hyperthermal pyrolysis under oxygen bombardment is simulated at a large scale of hundreds of nanometers to observe the intricate phenomena occurring from the surface to the depth inside the material. The intrinsic thermal durability of the model polymer at extreme conditions with and without oxygen environment can be effectively simulated from the proposed mesoscale simulation to predict important thermal degradation properties required for continuum-scale pyrolysis and ablation simulations. This work serves as an initial investigation of polymer pyrolysis at the mesoscale and helps understand the concept at a larger scale.

3.
ACS Omega ; 6(47): 32198-32207, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34870040

RESUMEN

This study describes the biosynthesis of gold nanoparticles (AuNPs) using the extract of Ganoderma lucidum in the buffer zone of Bach Ma National Park, Vietnam, as a reducing and protecting agent using microwave-assisted synthesis. The as-synthesized AuNPs were characterized using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Compared to the conventional method, the proposed microwave-assisted method produced AuNPs having a small size of 22.07 ± 8.11 nm in a short synthesis time period. In excess NaBH4, the as-prepared AuNPs demonstrated good catalytic activity for reducing 4-nitrophenol to 4-aminophenol. Furthermore, AuNPs demonstrated improved reusability after four cycles. The pseudo-first-order apparent rate constant was estimated to be 0.086 min-1 at 303 K. Both the catalytic mechanism and reaction path of reduction were proposed. Moreover, activation energy and thermodynamic parameters, including activation enthalpy and entropy, were examined.

4.
Sci Rep ; 9(1): 13290, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527611

RESUMEN

This study proposes a novel skinny button with multimodal audio and haptic feedback to enhance the touch user interface of electronic devices. The active material in the film-type actuator is relaxor ferroelectric polymer (RFP) poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] blended with poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], which produces mechanical vibrations via the fretting vibration phenomenon. Normal pressure applied by a human fingertip on the film-type skinny button mechanically activates the locally concentrated electric field under the contact area, thereby producing a large electrostrictive strain in the blended RFP film. Multimodal audio and haptic feedback is obtained by simultaneously applying various electric signals to the pairs of ribbon-shaped top and bottom electrodes. The fretting vibration provides tactile feedback at frequencies of 50-300 Hz and audible sounds at higher frequencies of 500 Hz to 1 kHz through a simple on-off mechanism. The advantage of the proposed audio-tactile skinny button is that it restores the "click" sensation to the popular virtual touch buttons employed in contemporary electronic devices.

5.
ACS Appl Mater Interfaces ; 11(36): 33292-33301, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31411459

RESUMEN

Tactile perception in large-area displays is currently attracting substantial research attention since, in conjunction with visible and auditory sensations, it provides more immersive and realistic interactions with displayed contents. Here, a new vibrotactile display based on the fretting phenomenon is developed for the first time to provide localized tactile feedback on a large-area display. Normal pressure by a human fingertip activates a locally concentrated electric field in a relaxor ferroelectric polymer (RFP) film under the contact area, which produces a localized electrostrictive strain. The synergistic interplay among the localized electric field, electrostrictive deformation of the RFP film, and contact area dramatically amplifies acoustic vibrations near the contact edge of a human fingertip. A blend of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer and poly(vinylidene fluoride-trifluoroethylene) (55:45) copolymer is proposed for the RFP to provide an enhanced actuation performance even at elevated temperatures. The fretting-vibrotactile mechanism has several interesting properties, such as tactile feedback on a stationary fingertip, pressure-responsive simple on-off mechanism, multitouch interaction, excellent transparency, and easy integration with capacitive or resistive touch sensors and friction-based haptic-feedback mechanisms. An array of RFP film vibrators can provide addressable content-related multiple tactile feedback on large-area displays by modulating the frequency, amplitude, and profile of the driving voltage signals.

6.
Materials (Basel) ; 12(11)2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181756

RESUMEN

Modelling brittle fracture by a phase-field fracture formulation has now been widely accepted. However, the full-order phase-field fracture model implemented using finite elements results in a nonlinear coupled system for which simulations are very computationally demanding, particularly for parametrized problems when the randomness and uncertainty of material properties are considered. To tackle this issue, we present two reduced-order phase-field models for parametrized brittle fracture problems in this work. The first one is a mesh-based Proper Orthogonal Decomposition (POD) method. Both the Discrete Empirical Interpolation Method (DEIM) and the Matrix Discrete Empirical Interpolation Method ((M)DEIM) are adopted to approximate the nonlinear vectors and matrices. The second one is a meshfree Krigingmodel. For one-dimensional problems, served as proof-of-concept demonstrations, in which Young's modulus and the fracture energy vary, the POD-based model can speed up the online computations eight-times, and for the Kriging model, the speed-up factor is 1100, albeit with a slightly lower accuracy. Another merit of the Kriging's model is its non-intrusive nature, as one does not need to modify the full-order model code.

7.
ACS Appl Mater Interfaces ; 11(12): 11988-11998, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30821436

RESUMEN

Two contacting surfaces grafted with polymer brushes have potential applications due to their extraordinary lubricating behavior. However, the polymer brushes may have poor mechanical stability under high normal and shear stresses, which is a challenge for practical usage of polymer brush systems. In this study, we propose the use of grafted nanoparticles as nanobearings on polymer-brush-coated surfaces to alleviate the harsh working conditions of polymer brushes and to improve their mechanical stability. We have performed dissipative particle dynamics (DPD) simulations to investigate the tribological interaction between grafted nanoparticle and parallel walls with noncharged polymer brushes in the presence of explicit solvent. The influences of several parameters (solvent quality, brush miscibility, etc.) on the tribological behavior of the system are investigated. The grafted nanoparticle obviously acts as a nanobearing that partially replaces the sliding contact between two brushed walls with rolling contact between the grafted nanoparticle and two brushed walls and reduces the number of DPD particles withstanding high force. Although the introduction of the grafted nanoparticle into polymer-brushed walls increases the friction coefficient by 20-30%, it does not greatly decrease lubrication of the brushed walls, while still helping in stabilizing the system of polymer brushes to be used with liquids with low viscosity, such as water. The DPD simulation results and analysis performed in this study would be beneficial in designing systems with polymer-brushed surfaces and grafted nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...