Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 410, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566115

RESUMEN

BACKGROUND: High expression of the glycosyltransferase UGT2B17 represents an independent adverse prognostic marker in chronic lymphocytic leukemia (CLL). It also constitutes a predictive marker for therapeutic response and a drug resistance mechanism. The key determinants driving expression of the UGT2B17 gene in normal and leukemic B-cells remain undefined. The UGT2B17 transcriptome is complex and is comprised of at least 10 alternative transcripts, identified by previous RNA-sequencing of liver and intestine. We hypothesized that the transcriptional program regulating UGT2B17 in B-lymphocytes is distinct from the canonical expression previously characterized in the liver. RESULTS: RNA-sequencing and genomics data revealed a specific genomic landscape at the UGT2B17 locus in normal and leukemic B-cells. RNA-sequencing and quantitative PCR data indicated that the UGT2B17 enzyme is solely encoded by alternative transcripts expressed in CLL patient cells and not by the canonical transcript widely expressed in the liver and intestine. Chromatin accessible regions (ATAC-Seq) in CLL cells mapped with alternative promoters and non-coding exons, which may be derived from endogenous retrotransposon elements. By luciferase reporter assays, we identified key cis-regulatory STAT3, RELA and interferon regulatory factor (IRF) binding sequences driving the expression of UGT2B17 in lymphoblastoid and leukemic B-cells. Electrophoretic mobility shift assays and pharmacological inhibition demonstrated key roles for the CLL prosurvival transcription factors STAT3 and NF-κB in the leukemic expression of UGT2B17. CONCLUSIONS: UGT2B17 expression in B-CLL is driven by key regulators of CLL progression. Our data suggest that a NF-κB/STAT3/IRF/UGT2B17 axis may represent a novel B-cell pathway promoting disease progression and drug resistance.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , FN-kappa B , Humanos , FN-kappa B/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Pronóstico , Apoptosis , ARN , Glucuronosiltransferasa/genética , Antígenos de Histocompatibilidad Menor
2.
Clin Transl Med ; 13(12): e1442, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037464

RESUMEN

BACKGROUND: Metabolic dependencies of chronic lymphocytic leukaemia (CLL) cells may represent new personalized treatment approaches in patients harbouring unfavourable features. METHODS: Here, we used untargeted metabolomics and lipidomics analyses to isolate metabolomic features associated with aggressive CLL and poor survival outcomes. We initially focused on profiles associated with overexpression of the adverse metabolic marker glycosyltransferase (UGT2B17) associated with poor survival and drug resistance. RESULTS: Leukaemic B-cell metabolomes indicated a significant perturbation in lipids, predominantly bio-active sphingolipids. Expression of numerous enzyme-encoding genes of sphingolipid biosynthesis pathways was significantly associated with shorter patient survival. Targeted metabolomics further exposed higher circulating levels of glucosylceramides (C16:0 GluCer) in CLL patients relative to healthy donors and an aggressive cancer biology. In multivariate analyses, C16:0 GluCer and sphinganine were independent prognostic markers and were inversely linked to treatment-free survival. These two sphingolipid species function as antagonistic mediators, with sphinganine being pro-apoptotic and GluCer being pro-proliferative, tested in leukemic B-CLL cell models. Blocking GluCer synthesis using ceramide glucosyltransferase inhibitors induced cell death and reduced the proliferative phenotype, which further sensitized a leukaemic B-cell model to the anti-leukaemics fludarabine and ibrutinib in vitro. CONCLUSIONS: Specific sphingolipids may serve as prognostic markers in CLL, and inhibiting enzymatic pathways involved in their biosynthesis has potential as a therapaeutic approach.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Esfingolípidos/genética , Esfingolípidos/metabolismo , Esfingolípidos/uso terapéutico , Metabolómica , Linfocitos B/metabolismo
3.
Cells ; 12(9)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37174695

RESUMEN

In chronic lymphocytic leukemia (CLL), an elevated glycosyltransferase UGT2B17 expression (UGT2B17HI) identifies a subgroup of patients with shorter survival and poor drug response. We uncovered a mechanism, possibly independent of its enzymatic function, characterized by an enhanced expression and signaling of the proximal effectors of the pro-survival B cell receptor (BCR) pathway and elevated Bruton tyrosine kinase (BTK) phosphorylation in B-CLL cells from UGT2B17HI patients. A prominent feature of B-CLL cells is the strong correlation of UGT2B17 expression with the adverse marker ZAP70 encoding a tyrosine kinase that promotes B-CLL cell survival. Their combined high expression levels in the treatment of naïve patients further defined a prognostic group with the highest risk of poor survival. In leukemic cells, UGT2B17 knockout and repression of ZAP70 reduced proliferation, suggesting that the function of UGT2B17 might involve ZAP70. Mechanistically, UGT2B17 interacted with several kinases of the BCR pathway, including ZAP70, SYK, and BTK, revealing a potential therapeutic vulnerability. The dual SYK and JAK/STAT6 inhibitor cerdulatinib most effectively compromised the proliferative advantage conferred by UGT2B17 compared to the selective BTK inhibitor ibrutinib. Findings point to an oncogenic role for UGT2B17 as a novel constituent of BCR signalosome also connected with microenvironmental signaling.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Fosforilación , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo
4.
Br J Cancer ; 128(2): 285-296, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347965

RESUMEN

BACKGROUND: Naturally occurring germline gene deletions (KO) represent a unique setting to interrogate gene functions. Complete deletions and differential expression of the human glycosyltransferase UGT2B17 and UGT2B28 genes are linked to prostate cancer (PCa) risk and progression, leukaemia, autoimmune and other diseases. METHODS: The systemic metabolic consequences of UGT deficiencies were examined using untargeted and targeted mass spectrometry-based metabolomics profiling of carefully matched, treatment-naive PCa cases. RESULTS: Each UGT KO differentially affected over 5% of the 1545 measured metabolites, with divergent metabolic perturbations influencing the same pathways. Several of the perturbed metabolites are known to promote PCa growth, invasion and metastasis, including steroids, ceramides and kynurenine. In UGT2B17 KO, reduced levels of inactive steroid-glucuronides were compensated by sulfated derivatives that constitute circulating steroid reservoirs. UGT2B28 KO presented remarkably lower levels of oxylipins paralleled by reduced inflammatory mediators, but higher ceramides unveiled as substrates of the enzyme in PCa cells. CONCLUSION: The distinctive and broad metabolic rewiring caused by UGT KO reinforces the need to examine their unique and divergent functions in PCa biology.


Asunto(s)
Glucuronosiltransferasa , Neoplasias de la Próstata , Humanos , Masculino , Técnicas de Inactivación de Genes , Glucurónidos , Fenotipo , Neoplasias de la Próstata/patología , Esteroides , Glucuronosiltransferasa/genética
5.
J Chromatogr A ; 1677: 463296, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35820232

RESUMEN

Nucleotide sugars and more specifically UDP-sugars, represent a major source of energy, key components of extracellular matrix, glycosylation and glucuronidation reactions, and emerge as important signaling molecules through P2Y14 purinergic receptor. Despite their pivotal role in a variety of physiological and pathological processes and their potential as biomarkers, UDP-sugar composition of biological fluids remains poorly studied. We developed a liquid chromatography electrospray ionization tandem mass spectrometry in multiple reaction monitoring mode for the simultaneous quantification of UDP-glucose, UDP-galactose, UDP-glucuronic acid, UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine in human blood and urine. Relative to existing methods, UDP-sugar recovery was enhanced with perchloric acid and ammonium formate during sample preparation that also significantly improved chromatographic stability. Performance of the assay was validated and allowed the absolute quantification of UDP-sugars with a wide dynamic range (0.1 to 200 ng/mL) using stable deuterated isotopes as internal standards. We report a fast (13 min run) and sensitive method (limit of detection: 10-30 pg/mL; lower limit of quantification ≤ 0.2 ng/ml) to simultaneously quantify five UDP-sugars in a low volume (100 µL) of plasma and urine. Findings identified sex-specific profiles in both plasma and urine of healthy subjects. Applicability was also successfully demonstrated in specimens collected from individuals displaying a variety of medical conditions. This validated method was optimized for a high-throughput assessment of UDP-sugars in specimens of clinical importance and enabled an accurate and reliable absolute quantification of important UDP-sugars in diverse clinical contexts.


Asunto(s)
Nucleótidos , Azúcares , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem/métodos , Uridina Difosfato Glucosa
6.
BMC Cancer ; 22(1): 526, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545761

RESUMEN

BACKGROUND: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated. METHODS: Here, fibrillarin (FBL) was used as a surrogate marker of ribosome biogenesis due to its essential role in the early steps of ribosome biogenesis and its association with poor prognosis in breast cancer when overexpressed. Using 3,275 non-metastatic primary breast tumors, we analysed FBL mRNA expression levels and protein nucleolar organisation. Usage of TCGA dataset allowed transcriptomic comparison between the different FBL expression levels-related breast tumours. RESULTS: We unexpectedly discovered that in addition to breast tumours expressing high level of FBL, about 10% of the breast tumors express low level of FBL. A correlation between low FBL mRNA level and lack of FBL detection at protein level using immunohistochemistry was observed. Interestingly, multivariate analyses revealed that these low FBL tumors displayed poor outcome compared to current clinical gold standards. Transcriptomic data revealed that FBL expression is proportionally associated with distinct amount of ribosomes, low FBL level being associated with low amount of ribosomes. Moreover, the molecular programs supported by low and high FBL expressing tumors were distinct. CONCLUSION: Altogether, we identified FBL as a powerful ribosome biogenesis-related independent marker of breast cancer outcome. Surprisingly we unveil a dual association of the ribosome biogenesis FBL factor with prognosis. These data suggest that hyper- but also hypo-activation of ribosome biogenesis are molecular traits of distinct tumors.


Asunto(s)
Neoplasias de la Mama , Biomarcadores/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Cromosómicas no Histona , Femenino , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
7.
Chem Biol Interact ; 319: 109021, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32092301

RESUMEN

High dietary iron intake is a risk factor for the development of colorectal cancer. However, how iron subsequently impacts the proliferation of colorectal cancer cells remains unclear. This study determined the expression of six iron regulatory genes in twenty-one human colorectal cancer (CRC) biopsies and matched normal colonic tissue. The results show that only hepcidin and ferritin heavy chain expression were increased in CRC biopsies as compared to matched normal tissues. Four established human CRC cell lines, HT-29, HCT-116, SW-620 and SW-480 were subsequently examined for their growth in response to increasing concentrations of iron, and iron depletion. Real time cell growth assay showed a significant inhibitory effect of acute iron loading in HCT-116 cells (IC50 = 258.25 µM at 72 h), and no significant effects in other cell types. However, ten week treatment with iron significantly reduced HT-29 and SW-620 cell growth, whereas no effect was seen in HCT-116 and SW-480 cells. Intracellular labile iron depletion induced the complete growth arrest and detachment of all of the CRC cell types except for the SW-620 cell line which was not affected in its growth. Treatment of starved CRC cells with hepcidin, the major regulator of iron metabolism, induced a significant stimulation of HT-29 cell growth but did not affect the growth of the other cell types. Collectively these results show that iron is central to CRC cell growth in a manner that is not identical between acute and chronic loading, and that is specific to the CRC cell type.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Hepcidinas/farmacología , Hierro de la Dieta/farmacología , Hierro/farmacología , Línea Celular Tumoral , Células HCT116 , Células HT29 , Humanos
8.
NAR Cancer ; 2(4): zcaa036, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34316693

RESUMEN

Recent epitranscriptomics studies unravelled that ribosomal RNA (rRNA) 2'O-methylation is an additional layer of gene expression regulation highlighting the ribosome as a novel actor of translation control. However, this major finding lies on evidences coming mainly, if not exclusively, from cellular models. Using the innovative next-generation RiboMeth-seq technology, we established the first rRNA 2'O-methylation landscape in 195 primary human breast tumours. We uncovered the existence of compulsory/stable sites, which show limited inter-patient variability in their 2'O-methylation level, which map on functionally important sites of the human ribosome structure and which are surrounded by variable sites found from the second nucleotide layers. Our data demonstrate that some positions within the rRNA molecules can tolerate absence of 2'O-methylation in tumoral and healthy tissues. We also reveal that rRNA 2'O-methylation exhibits intra- and inter-patient variability in breast tumours. Its level is indeed differentially associated with breast cancer subtype and tumour grade. Altogether, our rRNA 2'O-methylation profiling of a large-scale human sample collection provides the first compelling evidence that ribosome variability occurs in humans and suggests that rRNA 2'O-methylation might represent a relevant element of tumour biology useful in clinic. This novel variability at molecular level offers an additional layer to capture the cancer heterogeneity and associates with specific features of tumour biology thus offering a novel targetable molecular signature in cancer.

9.
Cancers (Basel) ; 10(10)2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30360377

RESUMEN

Background: Nucleolin (NCL) is a multifunctional protein with oncogenic properties. Anti-NCL drugs show strong cytotoxic effects, including in triple-negative breast cancer (TNBC) models, and are currently being evaluated in phase II clinical trials. However, few studies have investigated the clinical value of NCL and whether NCL stratified cancer patients. Here, we have investigated for the first time the association of NCL with clinical characteristics in breast cancers independently of the different subtypes. Methods: Using two independent series (n = 216; n = 661), we evaluated the prognostic value of NCL in non-metastatic breast cancers using univariate and/or multivariate Cox-regression analyses. Results: We reported that NCL mRNA expression levels are markers of poor survivals independently of tumour size and lymph node invasion status (n = 216). In addition, an association of NCL expression levels with poor survival was observed in TNBC (n = 40, overall survival (OS) p = 0.0287, disease-free survival (DFS) p = 0.0194). Transcriptomic analyses issued from The Cancer Genome Atlas (TCGA) database (n = 661) revealed that breast tumours expressing either low or high NCL mRNA expression levels exhibit different gene expression profiles. These data suggest that tumours expressing high NCL mRNA levels are different from those expressing low NCL mRNA levels. Conclusions: NCL is an independent marker of prognosis in breast cancers. We anticipated that anti-NCL is a promising therapeutic strategy that could rapidly be evaluated in high NCL-expressing tumours to improve breast cancer management.

10.
Cancers (Basel) ; 10(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883412

RESUMEN

Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA