Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1268843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822422

RESUMEN

Introduction: Cellular retinoic acid (RA)-binding protein 1 (CRABP1) is a highly conserved protein comprised of an anti-parallel, beta-barrel, and a helix-turn-helix segment outside this barrel. Functionally, CRABP1 is thought to bind and sequester cytosolic RA. Recently, CRABP1 has been established as a major mediator of rapid, non-genomic activity of RA in the cytosol, referred to as "non-canonical" activity. Previously, we have reported that CRABP1 interacts with and dampens the activation of calcium-calmodulin (Ca2+-CaM)-dependent kinase 2 (CaMKII), a major effector of Ca2+ signaling. Through biophysical, molecular, and cellular assays, we, herein, elucidate the molecular and structural mechanisms underlying the action of CRABP1 in dampening CaMKII activation. Results: We identify an interaction surface on CRABP1 for CaMKII binding, located on the beta-sheet surface of the barrel, and an allosteric region within the helix segment outside the barrel, where both are important for interacting with CaMKII. Molecular studies reveal that CRABP1 preferentially associates with the inactive form of CaMKII, thereby dampening CaMKII activation. Alanine mutagenesis of residues implicated in the CaMKII interaction results in either a loss of this preference or a shift of CRABP1 from associating with the inactive CaMKII to associating with the active CaMKII, which corresponds to changes in CRABP1's effect in modulating CaMKII activation. Conclusions: This is the first study to elucidate the molecular and structural basis for CRABP1's function in modulating CaMKII activation. These results further shed insights into CRABP1's functional involvement in multiple signaling pathways, as well as its extremely high sequence conservation across species and over evolution.

2.
Cell Biosci ; 13(1): 168, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700376

RESUMEN

BACKGROUND: A motor unit (MU) is formed by a single alpha motor neuron (MN) and the muscle fibers it innervates. The MU is essential for all voluntary movements. Functional deficits in the MU result in neuromuscular disorders (NMDs). The pathological mechanisms underlying most NMDs remain poorly understood, in part due to the lack of in vitro models that can comprehensively recapitulate multistage intercellular interactions and physiological function of the MU. RESULTS: We have designed a novel three-dimensional (3D) bilayer hydrogel tri-culture system where architecturally organized MUs can form in vitro. A sequential co-culture procedure using the three cell types of a MU, MN, myoblast, and Schwann cell was designed to construct a co-differentiating tri-culture on a bilayer hydrogel matrix. We utilized a µ-molded hydrogel with an additional Matrigel layer to form the bilayer hydrogel device. The µ-molded hydrogel layer provides the topological cues for myoblast differentiation. The Matrigel layer, with embedded Schwann cells, not only separates the MNs from myoblasts but also provides a proper micro-environment for MU development. The completed model shows key MU features including an organized MU structure, myelinated nerves, aligned myotubes innervated on clustered neuromuscular junctions (NMJs), MN-driven myotube contractions, and increases in cytosolic Ca2+ upon stimulation. CONCLUSIONS: This organized and functional in vitro MU model provides an opportunity to study pathological events involved in NMDs and peripheral neuropathies, and can serve as a platform for physiological and pharmacological studies such as modeling and drug screening. Technically, the rational of this 3D bilayer hydrogel co-culture system exploits multiple distinct properties of hydrogels, facilitating effective and efficient co-culturing of diverse cell types for tissue engineering.

3.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36902410

RESUMEN

All-trans-retinoic Acid (atRA) is the principal active metabolite of Vitamin A, essential for various biological processes. The activities of atRA are mediated by nuclear RA receptors (RARs) to alter gene expression (canonical activities) or by cellular retinoic acid binding protein 1 (CRABP1) to rapidly (minutes) modulate cytosolic kinase signaling, including calcium calmodulin-activated kinase 2 (CaMKII) (non-canonical activities). Clinically, atRA-like compounds have been extensively studied for therapeutic applications; however, RAR-mediated toxicity severely hindered the progress. It is highly desirable to identify CRABP1-binding ligands that lack RAR activity. Studies of CRABP1 knockout (CKO) mice revealed CRABP1 to be a new therapeutic target, especially for motor neuron (MN) degenerative diseases where CaMKII signaling in MN is critical. This study reports a P19-MN differentiation system, enabling studies of CRABP1 ligands in various stages of MN differentiation, and identifies a new CRABP1-binding ligand C32. Using the P19-MN differentiation system, the study establishes C32 and previously reported C4 as CRABP1 ligands that can modulate CaMKII activation in the P19-MN differentiation process. Further, in committed MN cells, elevating CRABP1 reduces excitotoxicity-triggered MN death, supporting a protective role for CRABP1 signaling in MN survival. C32 and C4 CRABP1 ligands were also protective against excitotoxicity-triggered MN death. The results provide insight into the potential of signaling pathway-selective, CRABP1-binding, atRA-like ligands in mitigating MN degenerative diseases.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Neuronas Motoras , Degeneración Nerviosa , Receptores de Ácido Retinoico , Tretinoina , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Receptores de Ácido Retinoico/metabolismo , Tretinoina/metabolismo , Neuronas Motoras/patología
4.
Int J Obes (Lond) ; 46(10): 1759-1769, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794192

RESUMEN

OBJECTIVES: Obesity, a metabolic syndrome, is known to be related to inflammation, especially adipose tissue inflammation. Cellular interactions within the expanded white adipose tissue (WAT) in obesity contribute to inflammation and studies have suggested that inflammation is triggered by inflamed adipocytes that recruit M1 macrophages into WAT. What causes accumulation of unhealthy adipocytes is an important topic of investigation. This study aims to understand the action of Cellular Retinoic Acid Binding Protein 1 (CRABP1) in WAT inflammation. METHODS: Eight weeks-old wild type (WT) and Crabp1 knockout (CKO) mice were fed with a normal diet (ND) or high-fat diet (HFD) for 8 weeks. Body weight and food intake were monitored. WATs and serum were collected for cellular and molecular analyses to determine affected signaling pathways. In cell culture studies, primary adipocyte differentiation and bone marrow-derived macrophages (BMDM) were used to examine adipocytes' effects, mediated by CRABP1, in macrophage polarization. The 3T3L1-adipocyte was used to validate relevant signaling pathways. RESULTS: CKO mice developed an obese phenotype, more severely under high-fat diet (HFD) feeding. Further, CKO's WAT exhibited a more severe inflammatory state as compared to wild type (WT) WAT, with a significantly expanded M1-like macrophage population. However, this was not caused by intrinsic defects of CKO macrophages. Rather, CKO adipocytes produced a significantly reduced level of adiponectin and had significantly lowered mitochondrial DNA content. CKO adipocyte-conditioned medium, compared to WT control, inhibited M2-like (CD206+) macrophage polarization. Mechanistically, defects in CKO adipocytes involved the ERK1/2 signaling pathway that could be modulated by CRABP1. CONCLUSIONS: This study shows that CRABP1 plays a protective role against HFD-induced WAT inflammation through, in part, its regulation of adiponectin production and mitochondrial homeostasis in adipocytes, thereby modulating macrophage polarization in WAT to control its inflammatory potential.


Asunto(s)
Tejido Adiposo Blanco , Inflamación , Obesidad , Receptores de Ácido Retinoico , Adipocitos/metabolismo , Adiponectina/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Medios de Cultivo Condicionados , ADN Mitocondrial/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
5.
Nutrients ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406141

RESUMEN

In this review, we discuss the emerging role of Cellular Retinoic Acid Binding Protein 1 (CRABP1) as a mediator of non-canonical activities of retinoic acid (RA) and relevance to human diseases. We first discuss the role of CRABP1 in regulating MAPK activities and its implication in stem cell proliferation, cancers, adipocyte health, and neuro-immune regulation. We then discuss an additional role of CRABP1 in regulating CaMKII activities, and its implication in heart and motor neuron diseases. Through molecular and genetic studies of Crabp1 knockout (CKO) mouse and culture models, it is established that CRABP1 forms complexes with specific signaling molecules to function as RA-regulated signalsomes in a cell context-dependent manner. Gene expression data and CRABP1 gene single nucleotide polymorphisms (SNPs) of human cancer, neurodegeneration, and immune disease patients implicate the potential association of abnormality in CRABP1 with human diseases. Finally, therapeutic strategies for managing certain human diseases by targeting CRABP1 are discussed.


Asunto(s)
Receptores de Ácido Retinoico , Tretinoina , Animales , Corazón , Humanos , Ratones , Ratones Noqueados , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Tretinoina/metabolismo
6.
Cell Death Differ ; 29(9): 1744-1756, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35217789

RESUMEN

Cellular retinoic acid-binding protein 1 (CRABP1) binds retinoic acid (RA) specifically in the cytoplasm with unclear functions. CRABP1 is highly and specifically expressed in spinal motor neurons (MNs). Clinical and pre-clinical data reveal a potential link between CRABP1 and MN diseases, including the amyotrophic lateral sclerosis (ALS). We established a sequenced MN-muscle co-differentiation system to engineer an in vitro functional 3D NMJ model for molecular studies and demonstrated that CRABP1 in MNs contributes to NMJ formation and maintenance. Consistently, Crabp1 knockout (CKO) mice exhibited an adult-onset ALS-like phenotype with progressively deteriorated NMJs, characterized with behavioral, EchoMRI, electrophysiological, histological, and immunohistochemical studies at 2-20-months old. Mechanistically, CRABP1 suppresses CaMKII activation to regulate neural Agrn expression and downstream muscle LRP4-MuSK signaling, thereby maintaining NMJ. A proof-of-concept was provided by specific re-expression of CRABP1 to rescue Agrn expression and the phenotype. This study identifies CRABP1-CaMKII-Agrn signaling as a physiological pre-synaptic regulator in the NMJ. This study also highlights a potential protective role of CRABP1 in the progression of NMJ deficits in MN diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Agrina/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Receptores de Ácido Retinoico/metabolismo
7.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830120

RESUMEN

Retinoic acid (RA), the principal active metabolite of vitamin A, is known to be involved in stress-related disorders. However, its mechanism of action in this regard remains unclear. This study reports that, in mice, endogenous cellular RA binding protein 1 (Crabp1) is highly expressed in the hypothalamus and pituitary glands. Crabp1 knockout (CKO) mice exhibit reduced anxiety-like behaviors accompanied by a lowered stress induced-corticosterone level. Furthermore, CRH/DEX tests show an increased sensitivity (hypersensitivity) of their feedback inhibition in the hypothalamic-pituitary-adrenal (HPA) axis. Gene expression studies show reduced FKBP5 expression in CKO mice; this would decrease the suppression of glucocorticoid receptor (GR) signaling thereby enhancing their feedback inhibition, consistent with their dampened corticosterone level and anxiety-like behaviors upon stress induction. In AtT20, a pituitary gland adenoma cell line elevating or reducing Crabp1 level correspondingly increases or decreases FKBP5 expression, and its endogenous Crabp1 level is elevated by GR agonist dexamethasone or RA treatment. This study shows, for the first time, that Crabp1 regulates feedback inhibition of the the HPA axis by modulating FKBP5 expression. Furthermore, RA and stress can increase Crabp1 level, which would up-regulate FKBP5 thereby de-sensitizing feedback inhibition of HPA axis (by decreasing GR signaling) and increasing the risk of stress-related disorders.


Asunto(s)
Ansiedad/fisiopatología , Homeostasis/fisiología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Ácido Retinoico/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Ansiedad/genética , Línea Celular Tumoral , Dexametasona/farmacología , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/genética , Hipotálamo/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Hipófisis/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Ácido Retinoico/genética , Proteínas de Unión a Tacrolimus/genética
8.
Cell Commun Signal ; 19(1): 69, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193153

RESUMEN

BACKGROUND: Intercellular communications are important for maintaining normal physiological processes. An important intercellular communication is mediated by the exchange of membrane-enclosed extracellular vesicles. Among various vesicles, exosomes can be detected in a wide variety of biological systems, but the regulation and biological implication of exosome secretion/uptake remains largely unclear. METHODS: Cellular retinoic acid (RA) binding protein 1 (Crabp1) knockout (CKO) mice were used for in vivo studies. Extracellular exosomes were monitored in CKO mice and relevant cell cultures including embryonic stem cell (CJ7), macrophage (Raw 264.7) and hippocampal cell (HT22) using Western blot and flow cytometry. Receptor Interacting Protein 140 (RIP140) was depleted by Crispr/Cas9-mediated gene editing. Anti-inflammatory maker was analyzed using qRT-PCR. Clinical relevance was accessed by mining multiple clinical datasets. RESULTS: This study uncovers Crabp1 as a negative regulator of exosome secretion from neurons. Specifically, RIP140, a pro-inflammatory regulator, can be transferred from neurons, via Crabp1-regulated exosome secretion, into macrophages to promote their inflammatory polarization. Consistently, CKO mice, defected in the negative control of exosome secretion, have significantly elevated RIP140-containing exosomes in their blood and cerebrospinal fluid, and exhibit an increased vulnerability to systemic inflammation. Clinical relevance of this pathway is supported by patients' data of multiple inflammatory diseases. Further, the action of Crabp1 in regulating exosome secretion involves its ligand and is mediated by its downstream target, the MAPK signaling pathway. CONCLUSIONS: This study presents the first evidence for the regulation of exosome secretion, which mediates intercellular communication, by RA-Crabp1 signaling. This novel mechanism can contribute to the control of systemic inflammation by transferring an inflammatory regulator, RIP140, between cells. This represents a new mechanism of vitamin A action that can modulate the homeostasis of system-wide innate immunity without involving gene regulation. Video Abstract.


Asunto(s)
Exosomas/genética , Inflamación/genética , Neuronas/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Receptores de Ácido Retinoico/genética , Animales , Sistemas CRISPR-Cas , Comunicación Celular/genética , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Homeostasis/genética , Humanos , Inflamación/patología , Ratones , Ratones Noqueados , Neuronas/patología , Células RAW 264.7 , Transducción de Señal/genética , Tretinoina/metabolismo
9.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527063

RESUMEN

Cellular retinoic acid-binding protein 1 (CRABP1) is highly expressed in motor neurons. Degenerated motor neuron-like MN1 cells are engineered by introducing SODG93A or AR-65Q to model degenerated amyotrophic lateral sclerosis (ALS) or spinal bulbar muscular atrophy neurons. Retinoic acid (RA)/sonic hedgehog (Shh)-induced embryonic stem cells differentiation into motor neurons are employed to study up-regulation of Crabp1 by Shh. In SODG93A or AR-65Q MN1 neurons, CRABP1 level is reduced, revealing a correlation of motor neuron degeneration with Crabp1 down-regulation. Up-regulation of Crabp1 by Shh is mediated by glioma-associated oncogene homolog 1 (Gli1) that binds the Gli target sequence in Crabp1's neuron-specific regulatory region upstream of minimal promoter. Gli1 binding triggers chromatin juxtaposition with minimal promoter, activating transcription. Motor neuron differentiation and Crabp1 up-regulation are both inhibited by blunting Shh with Gli inhibitor GANT61. Expression data mining of ALS and spinal muscular atrophy (SMA) motor neurons shows reduced CRABP1, coincided with reduction in Shh-Gli1 signaling components. This study reports motor neuron degeneration correlated with down-regulation in Crabp1 and Shh-Gli signaling. Shh-Gli up-regulation of Crabp1 involves specific chromatin remodeling. The physiological and pathological implication of this regulatory pathway in motor neuron degeneration is supported by gene expression data of ALS and SMA patients.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neuronas Motoras/citología , Receptores de Ácido Retinoico/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Minería de Datos , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Ratones Endogámicos C57BL , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Regiones Promotoras Genéticas , Piridinas/farmacología , Pirimidinas/farmacología , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores , Proteína con Dedos de Zinc GLI1/genética
10.
Methods Enzymol ; 637: 261-281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32359648

RESUMEN

All-trans retinoic acid (atRA) is the principle active metabolite of Vitamin A. atRA is well known to act through nuclear RA receptors (RARs) to regulate gene expression involved in a wide spectrum of biological processes such as growth, differentiation, and function. Recently, novel activities of atRA, independent of the action of RARs, have been increasingly reported and referred to as noncanonical activities. We have determined cellular retinoic acid binding protein 1 (CRABP1) as the primary mediator of the noncanonical activities of atRA. At the molecular level, atRA binds CRABP1, which then immediately acts as an adaptor in the formation of specific signaling scaffolds to rapidly modulate downstream signaling pathways in a cell context-dependent manner. The first established CRABP1-atRA activity is to rapidly dampen the activation of the mitogen-activated protein kinase (MAPK) cascade in response to growth factor stimulation, thereby suppressing cell cycle progression of stem cells. The second established activity is to rapidly reduce Ca2+/calmodulin dependent kinase II (CaMKII) activity in differentiated cells such as cardiomyocyte in response to ß-adrenergic stimulation. This chapter describes in vivo and in vitro experimental systems and methodologies appropriate for determining the noncanonical activities of atRA that are mediated by CRABP1 and cell context dependent.


Asunto(s)
Fenómenos Biológicos , Tretinoina , Diferenciación Celular , Miocitos Cardíacos , Transducción de Señal
11.
Sci Rep ; 9(1): 17042, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728066

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Sci Rep ; 9(1): 10929, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358819

RESUMEN

The rapidly accelerated fibrosarcoma (Raf) kinase is canonically activated by growth factors that regulate multiple cellular processes. In this kinase cascade Raf activation ultimately results in extracellular regulated kinase 1/2 (Erk1/2) activation, which requires Ras binding to the Ras binding domain (RBD) of Raf. We recently reported that all-trans retinoic acid (atRA) rapidly (within minutes) activates Erk1/2 to modulate cell cycle progression in stem cells, which is mediated by cellular retinoic acid binding protein 1 (Crabp1). But how atRA-bound Crabp1 regulated Erk1/2 activity remained unclear. We now report Raf kinase as the direct target of atRA-Crabp1. Molecularly, Crabp1 acts as a novel atRA-inducible scaffold protein for Raf/Mek/Erk in cells without growth factor stimulation. However, Crabp1 can also compete with Ras for direct interaction with the RBD of Raf, thereby negatively modulating growth factor-stimulated Raf activation, which can be enhanced by atRA binding to Crabp1. NMR heteronuclear single quantum coherence (HSQC) analyses reveal the 6-strand ß-sheet face of Crabp1 as its Raf-interaction surface. We identify a new atRA-mimicking and Crabp1-selective compound, C3, that can also elicit such an activity. This study uncovers a new signal crosstalk between endocrine (atRA-Crabp1) and growth factor (Ras-Raf) pathways, providing evidence for atRA-Crabp1 as a novel modulator of cell growth. The study also suggests a new therapeutic strategy by employing Crabp1-selective compounds to dampen growth factor stimulation while circumventing RAR-mediated retinoid toxicity.


Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Quinasas raf/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Ratones , Unión Proteica , Conformación Proteica en Lámina beta , Receptores de Ácido Retinoico/química , Tretinoina/análogos & derivados , Tretinoina/metabolismo , Quinasas raf/química
13.
Eur J Pharmacol ; 858: 172485, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31238067

RESUMEN

Inhibiting Ca2+/calmodulin-dependent protein kinase II (CaMKII) over activation can decrease detrimental cardiac remodeling that leads to dilated cardiomyopathy, cell death, and heart failure. We previously showed that cellular retinoic acid binding protein 1 (Crabp1) knockout mice (CKO) exhibited a more severe isoproterenol (ISO)-induced heart failure and cardiac remodeling phenotype with elevated CaMKII activity in the heart, suggesting a cardiac-protective function of Crabp1 through modulating CaMKII activity. Here we examine whether the highly selective, endogenous ligand of Crabp1, all-trans retinoic acid (RA), can attenuate ISO-induced cardiac dysfunction. We also examine if this attenuation involves Crabp1 and the inhibition of CaMKII. RA pre-treatment followed by ISO challenge effectively restores ejection fraction in wild type, but not in CKO mice. This is correlated with reduced CaMKII auto-phosphorylation at T287 and phospholamban phosphorylation at T17, a substrate of CaMKII. RA pretreatment also reduces ISO-induced apoptosis in WT heart. Cell culture experiments confirm that RA inhibits CaMKII phosphorylation, which requires Crabp1. Molecular data reveal interaction of Crabp1 with the kinase and regulatory domains of CaMKII, and that RA selectively enhances Crabp1 interaction with the regulatory domain, suggesting a potential regulatory role for holo-Crabp1 in CaMKII activation. Together, these data demonstrate that RA bound Crabp1 plays a protective role in ß-adrenergic stimulated cardiac remodeling, which is partially attributed to its dampening CaMKII activation. Targeting Crabp1 provides a potentially new therapeutic strategy for managing heart diseases.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corazón/fisiopatología , Isoproterenol/farmacología , Receptores de Ácido Retinoico/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Dominio Catalítico , Activación Enzimática/efectos de los fármacos , Corazón/efectos de los fármacos , Ratones , Fosforilación/efectos de los fármacos
14.
Endocrinology ; 158(9): 3004-3014, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28911165

RESUMEN

Retinoic acid (RA) is the active ingredient of vitamin A. It exerts its canonical activity by binding to nuclear RA receptors (RARs) to regulate gene expression. Increasingly, RA is also known to elicit nongenomic RAR-independent activities, most widely detected in activating extracellular regulated kinase (ERK)1/2. This study validated the functional role of cellular retinoic acid-binding protein 1 (Crabp1) in mediating nongenomic activity in RA, specifically activating ERK1/2 to rapidly augment the cell cycle by expanding the growth 1 phase and slowing down embryonic stem cell and neural stem cell (NSC) proliferation. The study further uncovered the physiological activity of Crabp1 in modulating NSC proliferation and animal behavior. In the Crabp1 knockout mouse hippocampus, where Crabp1 is otherwise detected in the subgranular zone, neurogenesis and NSC proliferation increased and hippocampus-dependent brain functions such as learning and memory correspondingly improved. This study established the physiological role of Crabp1 in modulating stem cell proliferation and hippocampus-dependent brain activities such as learning and memory.


Asunto(s)
Proliferación Celular/genética , Aprendizaje/fisiología , Memoria/fisiología , Células-Madre Neurales/fisiología , Receptores de Ácido Retinoico/fisiología , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Receptores de Ácido Retinoico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA