Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 20(25): e2307774, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38200683

RESUMEN

Tin (Sn)-based perovskites are being investigated in many optoelectronic applications given their similar valence electron configuration to that of lead-based perovskites and the potential environmental hazards of lead-based perovskites. However, the formation of high-quality Sn-based perovskite films faces several challenges, mainly due to the easy oxidation of Sn2+ to Sn4+ and the fast crystallization rate. Here, to develop an environmentally friendly process for Sn-based perovskite fabrication, a series of natural antioxidants are studied as additives and ascorbic acid (VitC) is found to have a superior ability to inhibit the oxidation problem. A common cyclic molecule, 18-Crown-6, is further added as a second additive, which synergizes with VitC to significantly reduce the nonradiative recombination pathways in the PEA2SnI4 film. This synergistic effect greatly improves the performance of 2D red Sn-based PeLED, with a maximum external quantum efficiency of 1.87% (≈9 times that of the pristine device), a purer color, and better bias stability. This work demonstrates the potential of the dual-additive approach in enhancing the performance of 2D Sn-based PeLEDs, while the use of these environmentally friendly additives contributes to their future sustainability.

2.
Nano Lett ; 24(6): 2102-2109, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295289

RESUMEN

The graphene-all-around (GAA) structure has been verified to grow directly at 380 °C using hot-wire chemical vapor deposition, within the thermal budget of the back end of the line (BEOL). The cobalt (Co) interconnects with the GAA structure have demonstrated a 10.8% increase in current density, a 27% reduction in resistance, and a 36 times longer electromigration lifetime. X-ray photoelectron spectroscopy and density functional theory calculations have revealed the presence of bonding between carbon and Co, which makes the Co atom more stable to resist external forces. The ability of graphene to act as a diffusion barrier in the GAA structure was confirmed through time-dependent dielectric breakdown measurement. The Co interconnect within the GAA structure exhibits enhanced electrical properties and reliability, which indicates compatibility applications as next-generation interconnect materials in CMOS BEOL.

3.
ACS Appl Mater Interfaces ; 15(40): 47845-47854, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768847

RESUMEN

This study demonstrates molybdenum disulfide (MoS2) as a superior candidate as a diffusion barrier and liner. This research explores a newly developed process to show how effectively MoS2 can be applied. First, a new approach is developed to prepare molybdenum disulfide (MoS2) by microwave plasma-enhanced sulfurization (MW-PES). MW-PES can rapidly and directly grow on the target substrate at low temperatures, which is compatible with the back-end-of-line (BEOL) technology. Second, the performance of MW-PES MoS2 as a diffusion barrier and liner is reported in the subsequent section. Through time-dependent dielectric breakdown (TDDB) measurements, MoS2 is shown to have a barrier property better than that of the current material, Ta, with the same thickness. According to the model fitting, the lifetime of the device is about 45.2 times the lifetime under normal operating conditions. Furthermore, MoS2 shows its superior thermal stability in maintaining the barrier properties. MoS2 is proven to be an excellent interface as a liner as it can provide sufficient adhesion and wettability to further effectively reduce the surface scattering of copper (Cu) and significantly lower the circuit resistance.

4.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37763864

RESUMEN

Pastes containing reduced graphene oxide (rGO) and LiCl-Mn(NO3)2·4H2O are screen-printed on a carbon cloth substrate and then calcined using a nitrogen atmospheric-pressure plasma jet (APPJ) for conversion into rGO-LiMnOx nanocomposites. The APPJ processing time is within 300 s. RGO-LiMnOx on carbon cloth is used to sandwich H2SO4, LiCl, or Li2SO4 gel electrolytes to form hybrid supercapacitors (HSCs). The areal capacitance, energy density, and cycling stability of the HSCs are evaluated using electrochemical measurement. The HSC utilizing the Li2SO4 gel electrolyte exhibits enhanced electrode-electrolyte interface reactions and increased effective surface area due to its high pseudocapacitance (PC) ratio and lithium ion migration rate. As a result, it demonstrates the highest areal capacitance and energy density. The coupling of charges generated by embedded lithium ions with the electric double-layer capacitance (EDLC) further contributed to the significant overall capacitance enhancement. Conversely, the HSC with the H2SO4 gel electrolyte exhibits better cycling stability. Our findings shed light on the interplay between gel electrolytes and electrode materials, offering insights into the design and optimization of high-performance HSCs.

5.
Adv Sci (Weinh) ; 10(26): e2302232, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400366

RESUMEN

Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m-2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages.

6.
Small ; 19(20): e2207734, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36794296

RESUMEN

Two-dimensional (2D) tin (Sn)-based perovskites have recently received increasing research attention for perovskite transistor application. Although some progress is made, Sn-based perovskites have long suffered from easy oxidation from Sn2+ to Sn4+ , leading to undesirable p-doping and instability. In this study, it is demonstrated that surface passivation by phenethylammonium iodide (PEAI) and 4-fluorophenethylammonium iodide (FPEAI) effectively passivates surface defects in 2D phenethylammonium tin iodide (PEA2 SnI4 ) films, increases the grain size by surface recrystallization, and p-dopes the PEA2 SnI4 film to form a better energy-level alignment with the electrodes and promote charge transport properties. As a result, the passivated devices exhibit better ambient and gate bias stability, improved photo-response, and higher mobility, for example, 2.96 cm2 V-1 s-1 for the FPEAI-passivated films-four times higher than the control film (0.76 cm2 V-1 s-1 ). In addition, these perovskite transistors display non-volatile photomemory characteristics and are used as perovskite-transistor-based memories. Although the reduction of surface defects in perovskite films results in reduced charge retention time due to lower trap density, these passivated devices with better photoresponse and air stability show promise for future photomemory applications.

7.
Angew Chem Int Ed Engl ; 62(6): e202214963, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484557

RESUMEN

Fermi's golden rule, a remarkable concept for the transition probability involving continuous states, is applicable to the interfacial electron-transporting efficiency via correlation with the surface density of states (SDOS). Yet, this concept has not been reported to tailor single-molecule junctions where gold is an overwhelmingly popular electrode material due to its superior amenability in regenerating molecular junctions. At the Fermi level, however, the SDOS of gold is small due to its fully filled d-shell. To increase the electron-transport efficiency, herein, gold electrodes are modified by a monolayer of platinum or palladium that bears partially filled d-shells and exhibits significant SDOS at the Fermi energy. An increase by 2-30 fold is found for single-molecule conductance of α,ω-hexanes bridged via common headgroups. The improved junction conductance is attributed to the electrode self-energy which involves a stronger coupling with the molecule and a larger SDOS participated by d-electrons at the electrode-molecule interfaces.

8.
Nanoscale ; 14(46): 17409-17417, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36383153

RESUMEN

In this study, a molecule with a three-dimensional (3D) cyclic structure, a cryptand, is demonstrated as an effective additive for the quasi-two-dimensional (quasi-2D) PEA2Csn-1PbnBr3n+1 (n = 3, herein) to improve its light-emitting performance. The cryptand can effectively regulate the phase distribution of the quasi-2D perovskite through its intense interaction with PbBr2, benefitting from its cage-like structure that can better capture the Pb2+ ions. Due to the inhibited growth of the low-n phases, a much-concentrated phase distribution is achieved for the cryptand-containing films. Moreover, its constituent O/N atoms can passivate the uncoordinated Pb2+ ions to improve the film quality. Such a synergistic effect thereby facilitates the charge/energy transfer among the multiple phases and reduces the non-radiative recombination. As a result, the quasi-2D perovskite light-emitting diode (PeLED) with the optimized cryptand doping ratio is shown to deliver the highest luminance (Lmax) of 15 532 cd m-2 with a highest external quantum efficiency (EQE) of 4.02%. Compared to the pristine device, Lmax is enhanced by ∼5 times and EQE is enhanced by ∼10 times.

9.
Adv Sci (Weinh) ; 9(22): e2201507, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35657078

RESUMEN

Smart fabrics that can harvest ambient energy and provide diverse sensing functionality via triboelectric effects have evoked great interest for next-generation healthcare electronics. Herein, a novel borophene/ecoflex nanocomposite is developed as a promising triboelectric material with tailorability, durability, mechanical stability, and flexibility. The addition of borophene nanosheets enables the borophene/ecoflex nanocomposite to exhibit tunable surface triboelectricity investigated by Kelvin probe force microscopy. The borophene/ecoflex nanocomposite is further fabricated into a fabric-based triboelectric nanogenerator (B-TENG) for mechanical energy harvesting, medical assistive system, and wound healing applications. The durability of B-TENG provides consistent output performance even after severe deformation treatments, such as folding, stretching, twisting, and washing procedures. Moreover, the B-TENG is integrated into a smart keyboard configuration combined with a robotic system to perform an upper-limb medical assistive interface. Furthermore, the B-TENG is also applied as an active gait phase sensing system for instantaneous lower-limb gait phase visualization. Most importantly, the B-TENG can be regarded as a self-powered in vitro electrical stimulation device to conduct continuous wound monitoring and therapy. The as-designed B-TENG not only demonstrates great potential for multifunctional self-powered healthcare sensors, but also for the promising advancements toward wearable medical assistive and therapeutic systems.


Asunto(s)
Nanocompuestos , Nanotecnología , Electricidad , Nanotecnología/métodos , Textiles , Cicatrización de Heridas
10.
ACS Appl Mater Interfaces ; 14(7): 9587-9596, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142213

RESUMEN

In this study, two natural small molecules, α-cyclodextrin (α-CD) and ß-cyclodextrin (ß-CD), are used as additives to improve the performance of quasi-2D PEA2Csn-1PbnBr3n+1 (n = 3, herein) PeLEDs. Both of them are shown to efficiently passivate the quasi-2D perovskite films to afford improved film quality and morphology, but they exhibit distinct phase regulation behaviors possibly due to their different pore sizes. It reveals that α-CD effectively suppresses the formation of the low-n phases (n ≤ 2), while ß-CD better regulates the phase with a medium-n value (n = 3). Because of effectively suppressing the formation of low-n phases, the CD-assisted quasi-2D perovskite films possess facilitated exciton energy transfer and reduced nonradiative recombination. Consequently, the optimized α-CD-derived PeLED shows the highest luminance (Lmax) of 37,825 cd/m2 with an external quantum efficiency (EQE) of 3.81%, while the ß-CD-derived PeLED delivers a lower Lmax of 24,793 cd/m2 with an EQE of 3.09%. Compared to the pristine device, Lmax is enhanced by 6.3 and 3.8 times for α-CD- and ß-CD-based PeLEDs, respectively, and EQE is enhanced by ∼4.8 times for both devices; besides, both CD-assisted devices also exhibit improved color purity and a lower bias dependency of electroluminescent intensity.

11.
Materials (Basel) ; 10(6)2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28773008

RESUMEN

The Anderson insulating states in Au nanoparticle assembly are identified and studied under the application of magnetic fields and gate voltages. When the inter-nanoparticle tunneling resistance is smaller than the quantum resistance, the system showing zero Mott gap can be insulating at very low temperature. In contrast to Mott insulators, Anderson insulators exhibit great negative magnetoresistance, inferring charge delocalization in a strong magnetic field. When probed by the electrodes spaced by ~200 nm, they also exhibit interesting gate-modulated current similar to the multi-dot single electron transistors. These results reveal the formation of charge puddles due to the interplay of disorder and quantum interference at low temperatures.

12.
Sci Rep ; 5: 11939, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26173736

RESUMEN

Piezoresistive responses of nanoparticle thin-film strain sensors on flexible polyimide substrates were studied. Disordered interparticle tunneling introduces microscopic detour of charge conduction so as to reduce gauge factors. The disorder also results in large resistance change when current flows in the direction perpendicular to a unidirectional strain, reducing response anisotropy. For practical usages, stability and endurance of these strain sensors are confirmed with 7 × 10(4) bending cycles. Cracks form in devices under prolonged cyclic bending and slightly reduce gauge factor.

13.
Nanoscale Res Lett ; 9(1): 640, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25489291

RESUMEN

Gold nanoparticles (AuNPs) have been deposited on n-type Ge photodetectors to improve the responsivity. Two different coverage ratios, including 10.5 and 30.3% of AuNPs have been prepared, and the fabricated photodetectors are compared with the control sample. The 1,310-nm responsivities at -2 V of the control, 10.5% AuNPs, and 30.3% AuNPs samples are 465, 556, and 623 mA/W, respectively. The AuNPs could increase the responsivities due to the plasmon resonance. The reflectance spectra of these samples have been measured to verify that plasmon resonance contributes to the forward scattering of incident light. The reflectance decreases with AuNP deposition, and a denser coverage results in a smaller reflectance. The smaller reflectance indicates more light could penetrate into the Ge active layer, and it results in a larger responsivity.

14.
Nanoscale ; 6(11): 5887-93, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24752439

RESUMEN

How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA