Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019229

RESUMEN

Indoor WLAN fingerprint localization systems have been widely applied due to the simplicity of implementation on various mobile devices, including smartphones. However, collecting received signal strength indication (RSSI) samples for the fingerprint database, named a radio map, is significantly labor-intensive and time-consuming. To solve the problem, this paper proposes a semi-supervised self-adaptive local linear embedding algorithm to build the radio map. First, this method uses the self-adaptive local linear embedding (SLLE) algorithm based on manifold learning to reduce the dimension of the high-dimensional RSSI samples and to extract a neighbor weight matrix. Secondly, a graph-based label propagation (GLP) algorithm is employed to build the radio map by semi-supervised learning from a large number of unlabeled RSSI samples to a few labeled RSSI samples. Finally, we propose a k self-adaptive neighbor weight (kSNW) algorithm, used for radio map construction in this paper, to realize online localization. The results of the experiments conducted in a real indoor environment show that the proposed method reduces the demand for large quantities of labeled samples and achieves good positioning accuracy. With only 25% labeled RSSI samples, our system can obtain positioning accuracy of more than 88%, within 3 m of localization errors.

2.
Sensors (Basel) ; 16(9)2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27618053

RESUMEN

With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...