Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 125: 109569, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185346

RESUMEN

Spermidine exerts protective roles in obesity, while the mechanism of spermidine in adipose tissue thermogenesis remains unclear. The present study first investigated the effect of spermidine on cold-stimulation and ß3-adrenoceptor agonist-induced thermogenesis in lean and high-fat diet-induced obese mice. Next, the role of spermidine on glucose and lipid metabolism in different types of adipose tissue was determined. Here, we found that spermidine supplementation did not affect cold-stimulated thermogenesis in lean mice, while significantly promoting the activation of adipose tissue thermogenesis under cold stimulation and ß3-adrenergic receptor agonist treatment in obese mice. Spermidine treatment markedly enhanced glucose and lipid metabolism in adipose tissues, and these results were associated with the activated autophagy pathway. Moreover, spermidine up-regulated fibroblast growth factor 21 (FGF21) signaling and its downstream pathway, including PI3K/AKT and AMPK pathways in vivo and in vitro. Knockdown of Fgf21 or inhibition of PI3K/AKT and AMPK pathways in brown adipocytes abolished the thermogenesis-promoting effect of spermidine, suggesting that the effect of spermidine on adipose tissue thermogenesis might be regulated by FGF21 signaling via the PI3K/AKT and AMPK pathways. The present study provides new insight into the mechanism of spermidine on obesity and its metabolic complications, thereby laying a theoretical basis for the clinical application of spermidine.


Asunto(s)
Tejido Adiposo Pardo , Espermidina , Ratones , Animales , Espermidina/farmacología , Espermidina/metabolismo , Espermidina/uso terapéutico , Tejido Adiposo Pardo/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Obesos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tejido Adiposo/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Obesidad/metabolismo , Glucosa/metabolismo , Termogénesis , Tejido Adiposo Blanco/metabolismo , Ratones Endogámicos C57BL
2.
Exp Neurol ; 373: 114689, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199510

RESUMEN

Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Inhibidores de la Dipeptidil-Peptidasa IV , Metformina , Ratones , Animales , Linagliptina/farmacología , Linagliptina/uso terapéutico , Quimiocina CCL3/farmacología , Microglía , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico , Inflamación
3.
Biol Pharm Bull ; 46(12): 1706-1713, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37778980

RESUMEN

Inflammatory bowel disease (IBD) is a worldwide issue, and the increased incidence has brought a heavy burden to patients and society. Gut microbiota is involved in the pathogenesis of IBD, and targeting the microbiota, such as probiotics, has emerged as a potential therapy for the treatment of IBD. Here, the effect of Bifidobacterium animalis ssp. lactis LKM512 (LKM512), an anti-aging probiotic, on dextran sulfate sodium salt (DSS)-induced IBD in larval zebrafish was determined. Supplementation of LKM512 promoted the survival rate of the larvae, together with increased locomotor activities and body length. In addition, LKM512 treatment enhanced mucus secretion and alleviated intestinal injury, and these results were associated with the upregulation of mucin-related and downregulation of inflammatory markers. Moreover, LKM512 increased the diversity of the microbiota and ameliorated the dysbiosis by increasing the abundance of Bacteroidetes and Firmicutes and reducing the abundance of Proteobacteria. Specifically, the abundance of beneficial bacteria, including the short-chain fatty-acids (SCFAs)-producing genera Lachnospiraceae_NK4A136_group, Muribaculaceae, and Alloprevotella, was increased by LKM512, while the abundance of harmful genera, such as Pseudomonas, Halomonas, and Escherichia-Shigella, was reduced by LKM512. Consistent with these findings, the microbial functions related to metabolism were partly reversed by LKM512, and importantly, fermentation of short-chain fatty acids-related functions were enhanced by LKM512. Therefore, LKM512 might be one potential probiotic for the prevention and treatment of IBD, and further studies that clarify the mechanism of LKM512 would promote the application of LKM512.


Asunto(s)
Bifidobacterium animalis , Enfermedades Inflamatorias del Intestino , Microbiota , Animales , Humanos , Pez Cebra , Bifidobacterium/metabolismo , Heces/microbiología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Sulfato de Dextran
4.
Chronobiol Int ; 40(6): 769-782, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37161366

RESUMEN

The circadian clock is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), and the target pathways of many NASH candidate drugs are controlled by the circadian clock. However, the application of chronopharmacology in NASH is little considered currently. Here, the time-dependent effect of REV-ERBα agonist SR9009 on diet-induced NASH and microbiota was investigated. C57BL/6J mice were fed a high-cholesterol and high-fat diet (CL) for 12 weeks to induce NASH and then treated with SR9009 either at Zeitgeber time 0 (ZT0) or ZT12 for another 6 weeks. Pharmacological activation of REV-ERBα by SR9009 alleviated hepatic steatosis, insulin resistance, liver inflammation, and fibrosis in CL diet-induced NASH mice. These effects were accompanied by improved gut barrier function and altered microbial composition and function in NASH mice, and the effect tended to be stronger when SR9009 was injected at ZT0. Moreover, SR9009 treatment at different time points resulted in a marked difference in the composition of the microbiota, with a stronger effect on the enrichment of beneficial bacteria and the diminishment of harmful bacteria when SR9009 was administrated at ZT0. Therefore, the time-dependent effect of REV-ERBα agonist on NASH was partly associated with the microbiota, highlighting the potential role of microbiota in the chronopharmacology of NASH and the possibility of discovering new therapeutic strategies for NASH.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ritmo Circadiano , Ratones Endogámicos C57BL , Dieta Alta en Grasa
5.
Life Sci ; 324: 121699, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061125

RESUMEN

AIMS: Inflammatory bowel disease (IBD) patients are accompanied by impaired intestinal barrier integrity and gut microbiota dysbiosis. Strategies targeting the gut microbiota are potential therapies for preventing and ameliorating IBD. MAIN METHODS: The potential roles of two probiotic stains, Bifidobacterium longum BL986 (BL986) and Lactobacillus casei LC122 (LC122), on intestinal mucosal barrier function and microbiota in IBD zebrafish of different ages were investigated. KEY FINDINGS: BL986 and LC122 treatment promoted the development and increased the microbiota diversity in larval zebrafish. Both probiotic treatment ameliorated mortality, promoted intestinal mucus secretion, and reduced the expression of inflammatory markers, thereby improving intestinal mucosal barrier function in dextran sulfate sodium salt (DSS)-induced ulcerative colitis (UC) and 2,4,6-trinitro-benzenesulfonicacid (TNBS)-induced Crohn's disease (CD) models in zebrafish. Moreover, the composition and function of microbiota were altered in IBD zebrafish, and probiotics treatment displayed prominent microbiota features. BL986 was more potent in the DSS-induced UC model, and increased the abundance of Faecalibaculum and butyric acid levels. LC122 exerted better protection against TNBS-induced CD, and increased the abundance of Enhydrobacter and acetic acid levels. Furthermore, the effect of probiotics was stronger in larval and aged zebrafish. CONCLUSION: The impact of probiotics on IBD might differ from the subtypes of IBD and the age of the zebrafish, suggesting the types of disease and age should be taken into full consideration during the practical usage of probiotics.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Microbiota , Probióticos , Animales , Pez Cebra , Lactobacillus , Bifidobacterium , Colitis Ulcerosa/microbiología , Probióticos/farmacología , Probióticos/uso terapéutico , Sulfato de Dextran , Modelos Animales de Enfermedad , Colitis/inducido químicamente
7.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1406-1420, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239349

RESUMEN

The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores de la Dipeptidil-Peptidasa IV , Microbioma Gastrointestinal , Probióticos , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Riñón , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Probióticos/uso terapéutico
8.
Front Nutr ; 9: 959703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958251

RESUMEN

Dietary intervention with a low glycemic index and full nutritional support is emerging as an effective strategy for diabetes management. Here, we found that the treatment of a novel compound dietary fiber and high-grade protein diet (CFP) improved glycemic control and insulin resistance in streptozotocin-induced diabetic mice, with a similar effect to liraglutide. In addition, CFP treatment ameliorated diabetes-related metabolic syndromes, such as hyperlipidemia, hepatic lipid accumulation and adipogenesis, systemic inflammation, and diabetes-related kidney damage. These results were greatly associated with enhanced gut barrier function and altered gut microbiota composition and function, especially those bacteria, microbial functions, and metabolites related to amino acid metabolism. Importantly, no adverse effect of CFP was found in our study, and CFP exerted a wider arrange of protection against diabetes than liraglutide. Thereby, fortification with balanced dietary fiber and high-grade protein, like CFP, might be an effective strategy for the management and treatment of diabetes.

9.
Metabolism ; 136: 155272, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35914622

RESUMEN

BACKGROUND AND OBJECTIVES: Chemokine (C-X3-C motif) ligand 1 (CX3CL1) and its receptor CX3CR1 regulate the migration and activation of immune cells and are involved in the pathogenesis of nonalcoholic steatohepatitis (NASH), but the mechanism remains elusive. Here, the roles of CX3CL1/CX3CR1 in the macrophage migration and polarization in the livers of NASH mice were investigated. METHODS AND RESULTS: The expression of Cx3cl1 and Cx3cr1 was markedly upregulated in the livers of lipotoxicity-induced NASH mice. CX3CR1 was predominantly expressed by F4/80+ macrophages and to a lesser degree by hepatic stellate cells or endothelial cells in the livers of NASH mice. Flow cytometry analysis revealed that, compared with chow-fed mice, NASH mice exhibited a significant increase in CX3CR1+ expression by liver macrophages (LMs), particularly M1 LMs. CX3CR1 deficiency caused a significant increase in inflammatory monocyte/macrophage infiltration and a shift toward M1 dominant macrophages in the liver, thereby exacerbating the progression of NASH. Moreover, transplantation of Cx3cr1-/- bone marrow was sufficient to cause glucose intolerance, inflammation, and fibrosis in the liver. In addition, deletion of CCL2 in Cx3cr1-/- mice alleviated NASH progression by decreasing macrophage infiltration and inducing a shift toward M2 dominant LMs. Importantly, overexpression of CX3CL1 in vivo protected against hepatic fibrosis in NASH. CONCLUSION: Pharmacological therapy targeting liver CX3CL1/CX3CR1 signaling might be a candidate for the treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
10.
J Agric Food Chem ; 70(21): 6478-6492, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583480

RESUMEN

Spermidine, a natural polyamine and physiological autophagy inducer, is involved in various physiological processes. However, the impact and mechanism of spermidine on nonalcoholic steatohepatitis (NASH) remains unclarified. We found that daily spermidine intake was significantly lower in volunteers with liver dysfunction than the healthy controls, and the serum and fecal spermidine levels were negatively correlated with the NASH phenotypes. Spermidine supplementation significantly attenuated hepatic lipid accumulation, insulin resistance, hepatic inflammation, and fibrosis in NASH mice induced by a western diet. The ameliorating effect of spermidine on lipid accumulation might be partly regulated by thyroid hormone-responsive protein (THRSP) signaling and autophagy. Moreover, spermidine altered the profile of hepatic bile acids (BAs) and microbial composition and function. Furthermore, spermidine reversed the progression of hepatic steatosis, inflammation, and fibrosis in mice with preexisting NASH. Therefore, spermidine ameliorates NASH partly through the THRSP signaling and the gut microbiota-mediated metabolism of BAs, suggesting that spermidine might be a viable therapy for NASH.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos y Sales Biliares/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Lípidos/farmacología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Espermidina/metabolismo , Hormonas Tiroideas/metabolismo
11.
Mol Nutr Food Res ; 66(3): e2100639, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34847296

RESUMEN

SCOPE: The impacts of longevity-promoting probiotic Bifidobacterium animalis subsp. lactis LKM512 (LKM512) on metabolic disease remain unclear. Here, the authors aim to explore the potential of LKM512 on the host physiological function and gut microbiota in high-fat diet-induced obese mice. METHODS AND RESULTS: LKM512 are orally administrated for 12 weeks, and the effects of LKM 512 on systemic inflammation and insulin resistance, as well as gut microbiota, are investigated in high-fat (HF) diet-induced obese mice. LKM512 supplementation ameliorates hepatic lipid accumulation, attenuates hepatic and adipose tissue inflammation, and improves intestinal barrier function. These results are associated with improved insulin sensitivity and metabolic endotoxemia. Furthermore, the colonization of LKM512 induces an increase in polyamine metabolism and production, together with significant alternations in the composition and function of gut microbiota in obese mice, which are correlated with these improved metabolic phenotypes in the host. CONCLUSION: The probiotic strain LKM512 may become a promising strategy to improve obesity and related metabolic disorders.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Resistencia a la Insulina , Probióticos , Animales , Bifidobacterium/metabolismo , Dieta Alta en Grasa/efectos adversos , Heces/microbiología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Probióticos/farmacología
12.
Front Endocrinol (Lausanne) ; 13: 1018608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686486

RESUMEN

Diabetic nephropathy (DN) is the most prominent cause of chronic kidney disease and end-stage renal failure. However, the pathophysiology of DN, especially the risk factors for early onset remains elusive. Increasing evidence has revealed the role of the innate immune system in developing DN, but relatively little is known about early immunological change that proceeds from overt DN. Herein, this work aims to investigate the immune-driven pathogenesis of DN using mass cytometry (CyTOF). The peripheral blood mononuclear lymphocytes (PBMC) from 6 patients with early-stage nephropathy and 7 type II diabetes patients without nephropathy were employed in the CyTOF test. A panel that contains 38 lineage markers was designed to monitor immune protein levels in PBMC. The unsupervised clustering analysis was performed to profile the proportion of individual cells. t-Distributed Stochastic Neighbor Embedding (t-SNE) was used to visualize the differences in DN patients' immune phenotypes. Comprehensive immune profiling revealed substantial immune system alterations in the early onset of DN, including the significant decline of B cells and the marked increase of monocytes. The level of CXCR3 was dramatically reduced in the different immune cellular subsets. The CyTOF data classified the fine-grained differential immune cell subsets in the early stage of DN. Innovatively, we identified several significant changed T cells, B cell, and monocyte subgroups in the early-stage DN associated with several potential biomarkers for developing DN, such as CTLA-4, CXCR3, PD-1, CD39, CCR4, and HLA-DR. Correlation analysis further demonstrated the robust relationship between above immune cell biomarkers and clinical parameters in the DN patients. Therefore, we provided a convincible view of understanding the immune-driven early pathogenesis of DN. Our findings exhibited that patients with DN are more susceptible to immune system disorders. The classification of fine-grained immune cell subsets in this present research might provide novel targets for the immunotherapy of DN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Leucocitos Mononucleares/metabolismo , Monocitos/metabolismo , Biomarcadores
13.
Metabolism ; 125: 154914, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656648

RESUMEN

BACKGROUND AND AIMS: The global prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing. Chemokines and their receptors have potential as therapeutic targets of NAFLD. We investigated the role of CC chemokine ligand 3 (CCL3) in the development of murine and human NAFLD. METHODS: CCL3-knockout mice (CCL3-/-) and littermate CCL3 wild-type control mice (WT) were fed a high-cholesterol and high-fat (CL) diet for 16 weeks to induce NAFLD. We investigated the impact of CCL3 gene deletion in bone marrow cells and leptin-deficient ob/ob mice on CL diet-induced steatohepatitis. We assayed the serum CCL3 levels in 36 patients with biopsy-proven NAFLD and nine healthy control subjects. RESULTS: Compared with normal chow (NC), the CL diet induced steatohepatitis and hepatic fibrosis and elevated the plasma CCL3 level. In the liver, CCL3 protein colocalized with F4/80+ macrophages, especially CD11c+ M1-like macrophages, rather than other cell types. CCL3-/- attenuated CL diet-induced steatohepatitis and fibrosis associated with M2-dominant liver macrophages compared with the WT. The reconstitution of bone marrow (BM) cells from CCL3-/- attenuated steatohepatitis in WT mice fed a CL diet. Furthermore, crossing CCL3-/- onto the ob/ob background prevented CL diet-induced NAFLD in ob/ob mice, which was associated with a lesser inflammatory phenotype of liver macrophages. Also, the serum and hepatic levels of CCL3 were significantly increased in patients with non-alcoholic steatohepatitis (NASH) compared to those with simple fatty liver (NAFL) and healthy subjects. CONCLUSION: Our data indicate that CCL3 facilitates macrophage infiltration into the liver and M1 polarization in the progression of steatohepatitis and highlight the need for further studies to determine the effect of CCL3-CCR1 and -CCR5 signaling blockade on the treatment of NAFLD.


Asunto(s)
Quimiocina CCL3/genética , Hígado Graso/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Animales , Quimiocina CCL3/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/patología , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Ratones , Ratones Noqueados
14.
J Agric Food Chem ; 69(34): 9800-9812, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34404209

RESUMEN

Aging is the most common cause of several neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The pathological hallmarks of age-dependent neuropathology consist of chronic neuroinflammation, oxidative stress, gliosis, learning disability, and cognitive decline. A novel hydrolyzed bioactive peptide mixture extracted from chicken meat, that is, hydrolyzed chicken extract (HCE) has been previously demonstrated to exert neuroprotective effects in rodents and humans. However, the mechanism of HCE on age-related neurological disorders remains unclear. Herein, we aimed to clarify the impact and mechanism of isolated bioactive components (BCs) from HCE on age-dependent neuroinflammation and cognitive impairment in middle-aged mice. We found that both BC and HCE supplementation ameliorated age-induced memory loss, alleviated hippocampal neuroinflammation and oxidative stress, followed by promoting hippocampal neurogenesis in mice. BC and HCE treatment also ameliorated age-dependent morphological anomalies and alleviated microgliosis and astrogliosis. In parallel, BC and HCE treatment showed a significant decrease in the NF-κB p65 and p38 MAPK signaling, which were associated with the enhancement of antioxidative enzymes activities. Furthermore, BC treatment attenuated the neuroinflammatory phenotypes by the decrease in M1-polarized microglia and the increase in M2-polarized microglia in vivo and in vitro. In addition, we found that cyclo(Phe-Phe), one of the cyclopeptides purified from BC, showed notable anti-inflammatory effects in BV2 cells. Taken together, BC might be used as a dietary supplement for alleviating age-dependent neuropathology in middle-aged individuals.


Asunto(s)
Disfunción Cognitiva , Microglía , Animales , Pollos , Disfunción Cognitiva/tratamiento farmacológico , Lipopolisacáridos , Carne , Ratones , FN-kappa B , Extractos Vegetales
15.
Chemosphere ; 282: 130952, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34082316

RESUMEN

Bisphenol A (BPA) has been found to promote hepatotoxicity, reproductive toxicity, and developmental toxicity. However, the neurotoxicity and mechanism of BPA on cognitive function are still unclear. To that end, eight-week-old adult male and female C57BL/6J mice were exposed to 0.05, 0.5, 5, and 50 mg/kg BPA by dietary supplementation for 22 weeks. BPA exposure impaired learning and memory in male mice, associated with increased neuroinflammation and damaged blood-brain barrier. BPA exposure reduced the tight junctions in the colon, resulting in dysfunction of the gut barrier. The levels of neurotransmitters in the serum, hippocampus, and colon of male mice, including tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid, were all decreased by BPA, together with reduced expression of tryptophan and 5-HT metabolism-related genes. Cecal microbiota analysis revealed that the diversity and composition of the microbiota in male mice were markedly altered by BPA, leading to functional profile changes in the microbial community. These results suggest that the neurotoxicity of BPA in male mice may be partly regulated by the interactions of the microbiota-gut-brain axis. However, BPA has little effect on the cognitive function in female mice, which might be caused by the microbial differences and the role of estrogen receptors.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Compuestos de Bencidrilo , Encéfalo , Cognición , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenoles , Serotonina
16.
Endocrinology ; 162(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33765141

RESUMEN

The CX3CL1-CX3CR1 system plays an important role in disease progression by regulating inflammation both positively and negatively. We reported previously that C-C chemokine receptors 2 and 5 promote obesity-associated adipose tissue inflammation and insulin resistance. Here, we demonstrate that CX3CL1-CX3CR1 signaling is involved in adipose tissue inflammation and insulin resistance in obese mice via adipose tissue macrophage recruitment and M1/M2 polarization. Cx3cl1 expression was persistently decreased in the epididymal white adipose tissue (eWAT) of high-fat diet-induced obese (DIO) mice, despite increased expression of other chemokines. Interestingly, in Cx3cr1-/- mice, glucose tolerance, insulin resistance, and hepatic steatosis induced by DIO or leptin deficiency were exacerbated. CX3CL1-CX3CR1 signaling deficiency resulted in reduced M2-polarized macrophage migration and an M1-dominant shift of macrophages within eWAT. Furthermore, transplantation of Cx3cr1-/- bone marrow was sufficient to impair glucose tolerance, insulin sensitivity, and regulation of M1/M2 status. Moreover, Cx3cl1 administration in vivo led to the attenuation of glucose intolerance and insulin resistance. Thus, therapy targeting the CX3CL1-CX3CR1 system may be beneficial in the treatment of type 2 diabetes by regulating M1/M2 macrophages.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/genética , Quimiocina CX3CL1/genética , Inflamación/patología , Resistencia a la Insulina/genética , Obesidad , Animales , Células Cultivadas , Dieta Alta en Grasa , Progresión de la Enfermedad , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal/genética
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 419-429, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637986

RESUMEN

Neuroinflammation and cognitive decline are the key pathological features in aging that bring detrimental impacts upon quality of life. However, there is no effective anti-aging pharmacological therapy thus far. Dietary supplements in particular essence of chicken (EC) has been found to be an effective remedy for alleviating mental stress and improving memory. In addition, a novel hydrolyzed chicken extract, ProBeptigen/CMI-168 (PB), showed beneficial effects on cognitive ability. However, the antiaging effect and possible mechanism of PB and EC are still unknown. Here, we investigated the antiaging effects of PB and EC on hippocampus-related cognitive decline and neuroinflammation in aged mice. PB and EC were administered for 16 weeks in 10-month-old mice. Both PB and EC treatments ameliorated age-related deterioration of learning and memory, and attenuated oxidative stress and inflammation in the hippocampus. These results were associated with decreased inflammatory cytokine levels and increased neurotransmitter levels in the hippocampus. The overall effects of improving aging-induced cognitive decline were more robust in PB-treated mice, while EC was effective in decreasing oxidative stress and inflammation. Moreover, alterations in the diversity and composition of the gut microbiota in aged mice were also regulated by both PB and EC, which induced distinguished features in the gut microbiota and their related functions. This study showed that PB exerts neuroprotective effects in aged mice, the mechanism of which might be different from that of EC. Therefore, PB has a potential as dietary supplement for ameliorating cognitive dysfunction and neuroinflammation in elderly individuals.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/prevención & control , Suplementos Dietéticos , Hipocampo/metabolismo , Fármacos Neuroprotectores/farmacología , Envejecimiento/patología , Animales , Pollos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Hipocampo/patología , Inflamación , Masculino , Ratones , Fármacos Neuroprotectores/química , Especificidad de la Especie
18.
J Agric Food Chem ; 69(6): 1864-1876, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33541082

RESUMEN

Inflammatory bowel disease (IBD) is associated with acute and chronic inflammation of the gastrointestinal tract and has emerged to be a global disease. Spermidine, a natural polyamine, plays a critical role in maintaining cellular homeostasis. Herein, we investigated the impact and mechanism of spermidine on both dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis in mice. We found that spermidine exerted protective effects against acute colitis, evidenced by reduced disease activity index (DAI) and colonic inflammation, increased colonic length, and upregulated tight junction proteins in these two colitis models. Importantly, spermidine exerted significant therapeutic and preventive effects against DSS-induced colitis. Pre- and post-treatment with spermidine reduced the expression of proinflammatory cytokines, phosphorylation of (nuclear factor-κB) NF-κB and (mitogen-activated protein kinase) MAPK, and the activation of F4/80 macrophages and T cells in the colon. Furthermore, spermidine upregulated M2 macrophage markers, whereas it downregulated M1 markers in the inflamed colons. In parallel, spermidine reduced M1 pro-inflammatory markers and enhanced M2 anti-inflammatory genes in RAW264.7 cells. These results revealed that spermidine-ameliorated colitis might be through the regulation of M1/M2 macrophage polarization. In addition, spermidine treatment also alleviated LPS/TNF-α-induced inflammation in Caco-2 cells. Taken together, spermidine prevented and reversed colonic inflammation in colitis mice and might be a promising candidate for IBD intervention.


Asunto(s)
Colitis , Espermidina , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colon , Citocinas , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , FN-kappa B
19.
Metabolism ; 114: 154409, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33096076

RESUMEN

BACKGROUND AND OBJECTIVES: The gut-liver axis plays an important role in the pathogenesis of nonalcoholic steatohepatitis (NASH), and increased intestinal permeability causes transfer of endotoxin to the liver, which activates the immune response, ultimately leading to hepatic inflammation. Nuclear receptor Rev-erbα is a critical regulator of circadian rhythm, cellular metabolism, and inflammatory responses. However, the role and mechanism of Rev-erbα in gut barrier function and NASH remain unclear. In the present study, we investigated the involvement of Rev-erbα in the regulation of intestinal permeability and the treatment of NASH. METHODS AND RESULTS: The expression of tight junction-related genes and Rev-erbs decreased in the jejunum, ileum and colon of mice with high cholesterol, high fat diet (CL)-induced NASH. Chromatin immunoprecipitation analysis indicated that REV-ERBα directly bound to the promoters of tight junction genes to regulate intestinal permeability. Pharmacological activation of REV-ERBα by SR9009 protected against lipopolysaccharide-induced increased intestinal permeability both in vitro and in vivo, and these effects were associated with the activation of autophagy and decreased apoptotic signaling of epithelial cells. In addition, the chronopharmacological effects of SR9009 were more potent at Zeitgeber time 0 (ZT0) than at ZT12, which was contrary to the rhythm of Rev-erbs in the gastrointestinal tract. The administration of SR9009 attenuated hepatic lipid accumulation, insulin resistance, inflammation, and fibrosis in mice with CL diet-induced NASH, which might be partly attributed to the enhancement of intestinal barrier function. CONCLUSION: Chronopharmacological activation of REV-ERBα might be a potential strategy to treat intestinal barrier dysfunction-related disorders and NASH.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Pirrolidinas/uso terapéutico , Receptores Citoplasmáticos y Nucleares/agonistas , Proteínas Represoras/agonistas , Tiofenos/uso terapéutico , Uniones Estrechas/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Glucemia , Células CACO-2 , Colesterol/sangre , Humanos , Insulina/sangre , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Permeabilidad/efectos de los fármacos , Pirrolidinas/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Uniones Estrechas/metabolismo , Triglicéridos/sangre
20.
Endocr J ; 68(4): 451-459, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33268598

RESUMEN

Type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance and relative insulin insufficiency, has become the most common chronic metabolic disease threatening global health. The preferred therapies for T2DM include lifestyle interventions and the use of anti-diabetic drugs. However, considering their adverse reactions, it is important to find a low-toxicity and effective functional food or drug for diabetes prevention and treatment. Astaxanthin is a potent antioxidant carotenoid found in marine organisms has been reported to prevent diet-induced insulin resistance and hepatic steatosis. To investigate the anti-diabetic effects of astaxanthin, male Wistar rats were fed a high-energy diet for 4 weeks, followed by a low dose streptozotocin (STZ) injection to induce the diabetes model, and the rats were then fed an astaxanthin-containing diet for another 3 weeks. Astaxanthin significantly decreased blood glucose and total cholesterol (TC) levels, and increased blood levels of high density lipoprotein cholesterol (HDL-C) in STZ-induced diabetic rats in a dose dependent manner. These results were associated with increased expression of insulin sensitivity related genes (adiponectin, adipoR1, and adipoR2) in vivo, thereby attenuating STZ-induced diabetes. In addition, we also compared the anti-diabetic effects of astaxanthin and monacolin K, which has been reported to downregulate hyperlipidemia and hyperglycemia. The results revealed that astaxanthin and monacolin K showed similar anti-diabetic effects in STZ-induced diabetic rats. Therefore, astaxanthin may be developed as an anti-diabetic agent in the future.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina/fisiología , Animales , Colesterol/sangre , Diabetes Mellitus Experimental/sangre , Masculino , Ratas , Ratas Wistar , Xantófilas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA