Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150717

RESUMEN

Recently, certain challenges and accompanying drawbacks have emerged in the preparation of high-strength and tough polymer hydrogels. Insights from wood science highlight the role of the intertwined molecular structure of lignin and crystalline cellulose in contributing to wood's strength. Herein, we immersed prestretched poly(vinyl alcohol) (PVA) polymer hydrogels into a solution of nanosized lignosulfonate sodium (LS), a water-soluble anionic polyelectrolyte, to creatively reconstruct this similar structure at the molecular scale in hydrogels. The nanosized LS effectively fixed and bundled the prestretched PVA polymers while inducing the formation of dense crystalline domains within the polymer matrix. Consequently, the interwoven structure of crystalline PVA and LS conferred good strength to the composite hydrogels, exhibiting a tensile strength of up to ∼23 MPa, a fracture strain of ∼350%, Young's modulus of ∼17 MPa, toughness of ∼47 MJ/m3, and fracture energy of ∼42 kJ/m2. This hydrogel far outperformed previous hydrogels composed directly of lignin and PVA (tensile strength <1.5 MPa). Additionally, the composite hydrogels demonstrated excellent antifreezing properties (<-80 °C). Notably, the LS-assisted reconstruction technology offers opportunities for the secondary fixation of PVA hydrogel shapes and high-strength welding of hydrogel components. This work introduces an approach for the high-value utilization of LS, a green byproduct of pulp production. LS's profound biomimetic strategy will be applied in multifunctional hydrogel fields.

2.
Membranes (Basel) ; 14(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39057656

RESUMEN

Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing-structure-property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance.

3.
Adv Mater ; : e2406671, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988151

RESUMEN

Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

4.
Int J Biol Macromol ; 274(Pt 2): 133280, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908622

RESUMEN

Electromagnetic hydrogels have attracted significant attention due to their vast potential in soft robotics, biomedical engineering, and energy harvesting. To facilitate future commercialization via large-scale industrial processes, we present a facile concept that utilizes the specialized knowledge of papermaking to fabricate hydrogels with multifunctional electromagnetic properties. The principles of papermaking wet end chemistry, which involves the handling of interactions among cellulosic fibers, fines, polymeric additives, and other components in aqueous systems, serves as a key foundation for this concept. Notably, based on these principles, the versatile use of chemical additives in combination with cellulosic materials enables the tailored design of various products. Our methodology exploits the unique hierarchically pitted and hollow tube-like structures of papermaking grade cellulosic fibers with discernible pits, enabling the incorporation of magnetite nanoparticles through lumen loading. By combining microscale softwood-derived cellulosic fibers with additives, we achieve dynamic covalent interactions that transform the cellulosic fiber slurry into an impressive hydrogel. The cellulosic fibers act as a skeleton, providing structural support within the hydrogel framework and facilitating the dispersion of nanoparticles. In accordance with our concept, the typical hydrogel exhibits combined attributes, including electrical conductivity, self-healing properties, pH responsiveness, and dynamic rheologic behavior. Our approach not only yields hydrogels with interesting properties but also aligns with the forefront of advanced cellulosic material applications. These materials hold the promise in remote strain sensing devices, electromagnetic navigation systems, contactless toys, and flexible electronic devices. The concept and findings of the current work may shed light on materials innovation based on traditional pulp and paper processes. Furthermore, the facile processes involved in hydrogel formation can serve as valuable tools for chemistry and materials education, providing easy demonstrations of principles for university students at different levels.


Asunto(s)
Celulosa , Hidrogeles , Celulosa/química , Hidrogeles/química , Conductividad Eléctrica , Papel , Fenómenos Electromagnéticos , Nanopartículas/química
5.
Int J Biol Macromol ; 274(Pt 2): 133317, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925199

RESUMEN

Photocatalytic membranes integrate membrane separation and photocatalysis to deliver an efficient solution for water purification, while the top priority is to exploit simple, efficient, renewable, and low-cost photocatalytic membrane materials. We herein propose a facile one-stone-two-birds strategy to construct a multifunctional regenerated cellulose composite membrane decorated by Prussian blue analogue (ZnPBA) microspheres for wastewater purification. The hypotheses are that: 1) ZnCl2 not only serves as a cellulose solvent for tuning cellulose dissolution and regeneration, but also functions as a precursor for in-situ growth of spherical-like ZnPBA; 2) More homogeneous reactions including coordination and hydrogen bonding among Zn2+, [Fe(CN)6]3- and cellulose chains contribute to a rapid and uniform anchoring of ZnPBA microspheres on the regenerated cellulose fibrils (RCFs). Consequently, the resultant ZnPBA/RCM features a high loading of ZnPBA (65.3 wt%) and exhibits excellent treatment efficiency and reusability in terms of photocatalytic degradation of tetracycline (TC) (90.3 % removal efficiency and 54.3 % of mineralization), oil-water separation efficiency (>97.8 % for varying oils) and antibacterial performance (99.4 % for E. coli and 99.2 % for S. aureus). This work paves a simple and useful way for exploiting cellulose-based functional materials for efficient wastewater purification.


Asunto(s)
Celulosa , Membranas Artificiales , Aguas Residuales , Purificación del Agua , Celulosa/química , Aguas Residuales/química , Purificación del Agua/métodos , Catálisis , Escherichia coli/efectos de los fármacos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Antibacterianos/química , Antibacterianos/farmacología , Tetraciclina/química , Tetraciclina/aislamiento & purificación , Procesos Fotoquímicos , Microesferas , Staphylococcus aureus/efectos de los fármacos
6.
Carbohydr Polym ; 341: 122320, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876713

RESUMEN

In an oil exploitation process, hydrogel plugging agents can effectively reduce the water-oil intermixing, decrease water extraction volume, and enhance oil recovery rate. The practical applications of traditional polyacrylamide (PAM) hydrogel plugging agents in oilfield are limited by their non-biodegradability, poor mechanical performance, and inferior temperature-resistance. This work developed a mechanically stable and high-temperature-resistant composite hydrogel (STP) by incorporating biodegradable scleroglucan (Slg) and TEMPO-oxidized cellulose nanofibers (TOCN) in the PAM hydrogel. The addition of Slg conferred heat resistance to the PAM hydrogel, while TOCN reinforced the mechanical strength. Anti-aging analyses revealed that the STP endured for 108 h in a saline environment at 140 °C. In the water flooding characterization, the STP displayed a breakthrough pressure of 42.10 psi/ft. at a flow rate of 0.75 cm3/min. Under these extreme conditions, the plugging pressure reached 14.74 psi/ft., meeting the essential criteria for oilfield water plugging. This research demonstrates the potential of polysaccharides in the preparation of sustainable, tough, and heat-resistant water plugging materials.

7.
Food Chem ; 453: 139673, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38772308

RESUMEN

Herein, the nanolignin-containing cellulose nanofibrils (LCNF)-enabled ratiometric fluorescent bio-nanocomposite film is developed. Interestingly, the inclusion of LCNF in the cellulose-based film enhances the detecting performance of food freshness, such as high sensitivity to biogenic amines (BAs) (limit of detection (LOD) of up to 1.83 ppm) and ultrahigh discernible fluorescence color difference (ΔE = 113.11). The underlying mechanisms are the fluorescence resonance energy transfer (FRET), π - π interaction, and cation - π interaction between LCNF and fluorescein isothiocyanate (FITC), as well as the increased hydrophobicity due to lignin, which increases the interactions of amines with FITC. Its color stability (up to 28 days) and mechanical property (49.4 Mpa) are simultaneously improved. Furthermore, a smartphone based detecting platform is developed to achieve access to food safety. This work presents a novel technology, which can have a great potential in the field of food packaging and safety.


Asunto(s)
Celulosa , Embalaje de Alimentos , Nanocompuestos , Nanofibras , Celulosa/química , Embalaje de Alimentos/instrumentación , Nanofibras/química , Nanocompuestos/química , Transferencia Resonante de Energía de Fluorescencia , Aminas Biogénicas/análisis , Aminas Biogénicas/química , Fluorescencia
8.
Int J Biol Macromol ; 267(Pt 2): 131364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583844

RESUMEN

3D printing technology demonstrates significant potential for the rapid fabrication of tailored geometric structures. Nevertheless, the prevalent use of fossil-derived compositions in printable inks within the realm of 3D printing results in considerable environmental pollution and ecological consequences. Lignin, the second most abundant biomass source on earth, possesses attributes such as cost-effectiveness, renewability, biodegradability, and non-toxicity. Enriched with active functional groups including hydroxyl, carbonyl, carboxyl, and methyl, coupled with its rigid aromatic ring structure and inherent anti-oxidative and thermoplastic properties, lignin emerges as a promising candidate for formulating printable inks. This comprehensive review presents the utilization of lignin, either in conjunction with functional materials or through the modification of lignin derivatives, as the primary constituent (≥50 wt%) for formulating printable inks across photo-curing-based (SLA/DLP) and extrusion-based (DIW/FDM) printing technologies. Furthermore, lignin as an additive with multi-faceted roles/functions in 3D printing inks is explored. The effects of lignin on the properties of printing inks and printed objects are evaluated. Finally, this review outlines future perspectives, emphasizing key obstacles and potential opportunities for facilitating the high-value utilization of lignin in the realm of 3D printing.


Asunto(s)
Tinta , Lignina , Impresión Tridimensional , Lignina/química
9.
Carbohydr Polym ; 335: 122069, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616091

RESUMEN

Water collection from atmospheric fog was deemed to be an efficient and sustainable strategy to defuse the freshwater scarcity crisis. Fog harvesting and trapping fibers, therefore, has aroused extensive interest due to their ease of preparation, weave, and use. However, the traditional fibers used in fog collector usually have a low fog collection capacity and efficiency because of their unreasonable morphology and structure design. Herein, we proposed a simple process to construct advanced fibers using a one-step wet spinning of hydrophobic polyvinylidene fluoride (PVDF) and hydrophilic cellulose mixture fiber for fog harvesting. The as-prepared fibers featured a petaloid structure and surface hydrophobic gradient, thus facilitating fog deposition, water droplet formation, and drainage. The unique longitudinal groove structure above enabled the hybrid fiber to achieve an excellent fog collection efficiency of 2750.26 mg/cm2/h per monofilament, which outstripped most of other fiber materials. When woven these fibers were in a longitudinal array network with an interval of 1 mm, and the fog collection efficiency can maintain at 10.30 L/m2/h. Therefore, this work provided a new strategy for further exploration of effective fog collection by cellulose-based fiber materials.

10.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675034

RESUMEN

Tetracycline (TC) is a common antibiotic; when untreated TC enters the environment, it will cause a negative impact on the human body through the food chain. In the present study, MnO2/MCM-41@Fe3O4 (FeMnMCM) prepared using a hydrothermal and redox method and Camellia oleifera shell-activated carbon (COFAC) prepared through alkali activation were encapsulated using alginate (ALG) and calcium chloride as a cross-linking matrix to give the composite beads COFAC-FeMnMCM-ALG. The resultant COFAC-FeMnMCM-ALG composite beads were then carefully characterized, showing a high immobilization of MnO2/MCM-41@Fe3O4, with porous COFAC as an effective bioadsorbent for enriching the pollutants in the treated samples. These bead catalysts were subsequently applied to the oxidative degradation of TC in a Fenton oxidation system. Several parameters affecting the degradation were investigated, including the H2O2 concentration, catalyst dosage, initial TC concentration, and temperature. A very high catalytic activity towards the degradation of TC was demonstrated. The electron paramagnetic resonance (EPR) and quenching results showed that ·OH and ·O2- were generated in the system, with ·OH as the main radical species. In addition, the COFAC-FeMnMCM-ALG catalyst exhibited excellent recyclability/reusability. We conclude that the as-prepared COFAC-FeMnMCM-ALG composite beads, which integrate MnO2 and Fe3O4 with bioadsorbents, provide a new idea for the design of catalysts for advanced oxidation processes (AOPs) and have great potential in the Fenton oxidation system to degrade toxic pollutants.

11.
Int J Biol Macromol ; 264(Pt 1): 130566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432269

RESUMEN

Polypeptides, especially star polypeptides, as a unique kind of biological macromolecules have broad applications in biomedical fields such as drug release, gene delivery, tissue engineering, and regenerative medicines due to their close structural similarity to naturally occurring peptides and proteins, biocompatibility, and amino acid functionality. However, the synthesis of star polypeptide mainly relies on the conventional primary amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) and suffers from low polymerization activity and limited controllability. This study proposes a fast, efficient and metal-free strategy to access star (co)polypeptides by combining the Michael reaction between acrylates and secondary aminoalcohols with the hydrogen-bonding organocatalytic ROP of NCA. This approach enables the preparation of a library of star (co)polypeptides with predesigned molecular weights, narrow molecular weight distributions, tunable arm number, and arm compositions. Importantly, this method exhibits high activity and selectivity at room temperature, making it both practical and versatile in synthesis applications.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Aminoácidos/química , Aminas/química , Polimerizacion , Metales
12.
Carbohydr Polym ; 334: 122035, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553204

RESUMEN

Inspired from human skin, micro- and nano-wrinkled wood surface with skin-tactile performance was designed and developed using a waterborne UV-curable polyurethane acrylate coating and cellulose nofibers (CNF). To further improve the properties, the CNF was diacetylated to D-CNF and further grafted with a hyperbranched polymer containing rich end amino groups (HB-CNF). The surface structure and chemical reactions were characterized, and the skin-tactile performance of the coating was comprehensively investigated. The HB-CNF exhibited excellent dispersion in the coating, and extensive reactions occurred between the two through the -NH2 and terminal -NCO groups, resulting in much improved mechanical properties and durability. Micro-wrinkles with a width of approximately 12-15 µm and a height of 8-14 µm were created, and nano-protrusions of wrinkles ranging from to 50-100 nm were obtained. The coated surface was hydrophobic and exhibited high resilience after compression, with a gloss of 3.3 GU at an incident angle of 60° and a static friction coefficient of 0.26, both of which were similar to those of human skin. The results presented an effective strategy for high-performance wood products with a good feeling, which is helpful to improve the market competitiveness and meet the people's pursuit of a better life.

13.
J Colloid Interface Sci ; 661: 450-459, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308885

RESUMEN

The development of a strong and tough conductive hydrogel capable of meeting the strict requirements of the electrode of a hydrogel-based triboelectric nanogenerator (H-TENG) remains an enormous challenge. Herein, a robust conductive polyvinyl alcohol (PVA) hydrogel is designed via a three-step method: (1) grafting with 3,4-dihydroxy benzaldehyde, (2) metal complexation using ferric chloride (FeCl3) and (3) salting-out using sodium citrate. The hydrogel contains robust crystalline PVA domains and reversible/high-density non-covalent interactions, such as hydrogen bonding, π-π interactions and Fe3+-catechol complexations. Benefiting from the crystalline domains, the hydrogel can resist external forces to the hydrogel network; meanwhile, the reversible/high-density of non-covalent interactions can impart gradual and persistent energy dissipation during deformation. The hydrogel possesses multiple cross-linked networks, with 6.47 MPa tensile stress, 1000 % strain, 35.24 MJ/m3 toughness and 37.59 kJ/m2 fracture energy. Furthermore, the inter-connected porous hydrogel has an ideal structure for ionic-conducing channels. The hydrogel is assembled into an H-TENG, which can generate open circuit voltage of âˆ¼ 150 V, short-circuit current of âˆ¼ 3.0 µA, with superb damage immunity. Subsequently, road traffic monitoring systems are innovatively developed and demonstrated by using the H-TENG. This study provides a novel strategy to prepare superiorly strong and tough hydrogels that can meet the high demand for H-TENGs.

14.
Chem Commun (Camb) ; 60(9): 1193, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38214682

RESUMEN

Correction for 'Critical role of hydrogen bonding between microcrystalline cellulose and g-C3N4 enables highly efficient photocatalysis' by Zhaoqiang Wang et al., Chem. Commun., 2024, 60, 204-207, https://doi.org/10.1039/D3CC04800D.

15.
Bioresour Technol ; 395: 130400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286169

RESUMEN

The rational use of bamboo to make dissolving pulp can offer up new opportunities for cellulose production, alleviating wood scarcity. Bamboo contains a high content of non-fiber cells, which presents technical challenges in dissolving pulp production by the conventional process. In this study, a process concept of separating hemicelluloses is presented by fiber fractionation and purification for cleaner production of bamboo dissolving pulp: bamboo kraft pulp was fractionated into long-fiber and short-fiber fractions. The cellulose-rich long-fiber fraction was converted to dissolving pulp by further purification treatment with acid hydrolysis and cold caustic extraction. The hemicellulose-rich short-fiber fraction was used for papermaking. The laboratory results were confirmed by those from mill trials. The combined pulp yield (dissolving pulp + paper-grade pulp) reached 49 %, which was significantly higher than that of the conventional pre-hydrolysis kraft pulping process. Furthermore, the quality of dissolving pulp was higher due to inherently higher cellulose content of long-fiber fraction.


Asunto(s)
Celulosa , Fraccionamiento Químico , Madera , Hidrólisis
16.
Small ; 20(12): e2306915, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939317

RESUMEN

Multi-component composite materials with a magnetic-dielectric synergistic effect exhibit satisfactory electromagnetic wave absorption performance. However, the effective construction of the structure for these multi-component materials to fully exploit the advantages of each component remains a challenge. Inspired by natural biomass, this study utilizes wood as the raw material and successfully prepares high-performance MoS2@Gd2O3/Mxene loaded porous carbon aerogel (MGMCA) composite material through a one-pot hydrothermal method and carbonization treatment process. With a delicate structural design, the MGMCA is endowed with abundant heterogeneous interface structures, favorable impedance matching characteristics, and a magnetic-dielectric synergistic system, thus demonstrating multiple electromagnetic wave loss mechanisms. Benefiting from these advantages, the obtained MGMCA exhibits outstanding electromagnetic wave absorption performance, with a minimum reflection loss of -57.5 dB at an ultra-thin thickness of only 1.9 mm. This research proposes a reliable strategy for the design of multi-component composite materials, providing valuable insight for the design of biomass-based materials as electromagnetic wave absorbers.

17.
Adv Sci (Weinh) ; 11(11): e2305962, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38161220

RESUMEN

Personalized healthcare management is an emerging field that requires the development of environment-friendly, integrated, and electrochemical multimodal devices. In this study, the concept of integrated paper-based biosensors (IFP-Multi ) for personalized healthcare management is introduced. By leveraging ink printing technology and a ChatGPT-bioelectronic interface, these biosensors offer ultrahigh areal-specific capacitance (74633 mF cm-2 ), excellent mechanical properties, and multifunctional sensing and humidity power generation capabilities. More importantly, the IFP-Multi devices have the potential to simulate deaf-mute vocalization and can be integrated into wearable sensors to detect muscle contractions and bending motions. Moreover, they also enable monitoring of physiological signals from various body parts, such as the throat, nape, elbow, wrist, and knee, and successfully record sharp and repeatable signals generated by muscle contractions. In addition, the IFP-Multi devices demonstrate self-powered handwriting sensing and moisture power generation for sweat-sensing applications. As a proof-of-concept, a GPT 3.5 model-based fine-tuning and prediction pipeline that utilizes recorded physiological signals through IFP-Multi is showcased, enabling artificial intelligence with multimodal sensing capabilities for personalized healthcare management. This work presents a promising and ecofriendly approach to developing paper-based electrochemical multimodal devices, paving the way for a new era of healthcare advancements.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Atención a la Salud , Tinta , Impresión
18.
Chem Commun (Camb) ; 60(2): 204-207, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050690

RESUMEN

Developing a highly efficient photocatalyst for energy and environmental applications is urgently required. Herein, graphitic carbon nitride (CN) coupled with microcrystalline cellulose (MCC) (denoted as MCC-X/CN) shows excellent photocatalytic performance for tetracycline (TC) degradation and H2 evolution. And the optimized MCC-0.05/CN shows an improved TC degradation rate (Kapp = 0.019 min-1) and H2 evolution rate (642.71 µmol g-1 h-1), which are 1.9 and 22 times higher than those of pure CN, respectively. This improvement primarily results from hydrogen bonding (H-bonding) between CN and MCC, which enables excellent charge separation and migration, leading to the outstanding photoelectrochemical properties of MCC-0.05/CN.

19.
ACS Appl Mater Interfaces ; 15(28): 33763-33773, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37424075

RESUMEN

With the continuous improvement of living standards and advancements in science and technology, composite materials with multiple functionalities are gaining high practical value in modern society. In this paper, we present a multifunctional conductive paper-based composite with electromagnetic (EMI) shielding, sensing, Joule heating, and antimicrobial properties. The composite is prepared by growing metallic silver nanoparticles inside the cellulose paper (CP) modified with polydopamine (PDA). The resulting CP@PDA@Ag (CPPA) composite has high conductivity and EMI shielding properties. Furthermore, CPPA composites demonstrate exceptional sensing, Joule heating, and antimicrobial properties. In addition, Vitrimer, a polymer with excellent cross-linked network structure, is introduced into CPPA composites to obtain CPPA-V intelligent electromagnetic shielding materials with shape memory function. These excellent properties show that the prepared multifunctional intelligent composite has exceptional EMI shielding, sensing, Joule heating, and antibacterial and shape memory properties. In short, this multifunctional intelligent composite material has great application prospects in flexible wearable electronics.

20.
ACS Appl Mater Interfaces ; 15(29): 34941-34955, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462122

RESUMEN

The loading of catalytic manganese dioxide (MnO2) nanoparticles onto an impregnated decorative paper has been an effective method for the removal of indoor formaldehyde (HCHO) pollutants. However, its preparation can present numerous challenges, including instability in dipping emulsions and leaching. In this investigation, a novel and stable formaldehyde-free polyacrylate dipping emulsion containing MnO2 particles was prepared and then back-coated on a decorative paper. To improve the dispersion and fixation, the MnO2 was modified with silane. HCHO can undergo physical adsorption on the cellulosic fibers present in the paper, while it can also undergo chemical degradation into CO2 within the MnO2 groups. The silane not only enhanced the interfacial adhesion to a polyacrylate resin but also increased the interlayer distance, thereby creating a larger space for HCHO absorption. The impregnated decorative paper back-coated with 10 wt % of silane-modified MnO2 exhibited a removal efficiency of approximately 90% for HCHO at 20 °C. The removal rate further improved to approximately 100% when the temperature was increased to 60 °C. Moreover, it is worth noting that the release of volatile organic compounds was exceptionally minimal. Additionally, the particleboard bonded with this impregnated decorative paper exhibited an extremely low emission of HCHO, with a value that approached 0 mg·L-1. Furthermore, the bonding strength of the surface remained unaffected. Therefore, this study provides a simple and eco-friendly method for effectively removing HCHO, which can enhance indoor air quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...