Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(18): e2309984, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430531

RESUMEN

The induction of cuproptosis, a recently identified form of copper-dependent immunogenic cell death, is a promising approach for antitumor therapy. However, sufficient accumulation of intracellular copper ions (Cu2+) in tumor cells is essential for inducing cuproptosis. Herein, an intelligent cuproptosis-inducing nanosystem is constructed by encapsulating copper oxide (CuO) nanoparticles with the copper ionophore elesclomol (ES). After uptake by tumor cells, ES@CuO is degraded to release Cu2+ and ES to synergistically trigger cuproptosis, thereby significantly inhibiting the tumor growth of murine B16 melanoma cells. Moreover, ES@CuO further promoted cuproptosis-mediated immune responses and reprogrammed the immunosuppressive tumor microenvironment by increasing the number of tumor-infiltrating lymphocytes and secreted inflammatory cytokines. Additionally, combining ES@CuO with programmed cell death-1 (PD-1) immunotherapy substantially increased the antitumor efficacy in murine melanoma. Overall, the findings of this study can lead to the use of a novel strategy for cuproptosis-mediated antitumor therapy, which may enhance the efficacy of immune checkpoint inhibitor therapy.


Asunto(s)
Cobre , Inmunoterapia , Melanoma Experimental , Animales , Ratones , Inmunoterapia/métodos , Cobre/química , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Modelos Animales de Enfermedad , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Clorofilidas , Nanopartículas/química
2.
Dig Dis Sci ; 69(2): 491-501, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38170337

RESUMEN

BACKGROUND AND AIM: Previous reports have suggested IFI16 as a tumor suppressor in hepatocellular carcinoma (HC). Nonetheless, the biological significance of IFI16 and its mechanism concerning resistance to cisplatin (DDP) in HC requires further exploration. METHODS: Samples of tumor and corresponding para-carcinoma tissues were acquired from patients with HC. Furthermore, DDP-resistant cell lines of HC, specifically HCC, Huh7 and Hepatoblastoma, HepG3, were generated by gradually increasing the concentration of DDP. Cell apoptosis and DNA damage were evaluated by utilizing flow cytometry assay and TUNEL staining. The interaction between IFI16 and interferon regulatory factor 3 (IRF3) proteins were analyzed using Co-Immunoprecipitation (Co-IP) assay. In vivo assays were conducted by establishing HC subcutaneous xenograft tumor models. RESULTS: The study found a reduction in IFI16 expression in both HC tissues and DDP-resistant HC cell lines. The binding of IFI16 to IRF3 regulated DNA damage-associated markers in vitro. Overexpression of IFI16 heightened the susceptibility of DDP-induced apoptosis and DNA damage, which was counteracted by IRF3 knockdown, while strengthened by IRF3 overexpression. Moreover, overexpression of IFI16 diminished in vivo DDP-resistant HC tumorigenicity. CONCLUSION: In summary, our findings suggest that IFI16 serves as a tumor suppressor in HC by promoting DNA damage via its interaction with IRF3, thereby reversing DDP resistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Interferón gamma , Factor 3 Regulador del Interferón/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , MicroARNs/genética , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...