Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 5(7): 633-644, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705163

RESUMEN

BACKGROUND: Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS: In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS: Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION: These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Amodiaquina , Antimaláricos , Combinación Arteméter y Lumefantrina , Combinación de Medicamentos , Fluorenos , Malaria Falciparum , Plasmodium falciparum , Primaquina , Pirimetamina , Sulfadoxina , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Pirimetamina/uso terapéutico , Pirimetamina/administración & dosificación , Amodiaquina/uso terapéutico , Amodiaquina/administración & dosificación , Sulfadoxina/uso terapéutico , Sulfadoxina/administración & dosificación , Masculino , Adulto , Femenino , Adolescente , Niño , Malaria Falciparum/transmisión , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Método Simple Ciego , Persona de Mediana Edad , Primaquina/uso terapéutico , Primaquina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Combinación Arteméter y Lumefantrina/administración & dosificación , Adulto Joven , Fluorenos/administración & dosificación , Fluorenos/uso terapéutico , Malí/epidemiología , Plasmodium falciparum/efectos de los fármacos , Artemisininas/administración & dosificación , Artemisininas/uso terapéutico , Aminoquinolinas/administración & dosificación , Aminoquinolinas/uso terapéutico , Aminoquinolinas/efectos adversos , Etanolaminas/administración & dosificación , Etanolaminas/uso terapéutico , Animales , Quimioterapia Combinada
2.
Sci Rep ; 13(1): 9522, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308503

RESUMEN

Sequence analysis of Plasmodium falciparum parasites is informative in ensuring sustained success of malaria control programmes. Whole-genome sequencing technologies provide insights into the epidemiology and genome-wide variation of P. falciparum populations and can characterise geographical as well as temporal changes. This is particularly important to monitor the emergence and spread of drug resistant P. falciparum parasites which is threatening malaria control programmes world-wide. Here, we provide a detailed characterisation of genome-wide genetic variation and drug resistance profiles in asymptomatic individuals in South-Western Mali, where malaria transmission is intense and seasonal, and case numbers have recently increased. Samples collected from Ouélessébougou, Mali (2019-2020; n = 87) were sequenced and placed in the context of older Malian (2007-2017; n = 876) and African-wide (n = 711) P. falciparum isolates. Our analysis revealed high multiclonality and low relatedness between isolates, in addition to increased frequencies of molecular markers for sulfadoxine-pyrimethamine and lumefantrine resistance, compared to older Malian isolates. Furthermore, 21 genes under selective pressure were identified, including a transmission-blocking vaccine candidate (pfCelTOS) and an erythrocyte invasion locus (pfdblmsp2). Overall, our work provides the most recent assessment of P. falciparum genetic diversity in Mali, a country with the second highest burden of malaria in West Africa, thereby informing malaria control activities.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Malí , Antiparasitarios , Variación Genética
3.
Malar J ; 21(1): 372, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474274

RESUMEN

BACKGROUND: In some settings, sensitive field diagnostic tools may be needed to achieve elimination of falciparum malaria. To this end, rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum protein HRP-2 are being developed with increasingly lower limits of detection. However, it is currently unclear how parasite stages that are unaffected by standard drug treatments may contribute to HRP-2 detectability and potentially confound RDT results even after clearance of blood stage infection. This study assessed the detectability of HRP-2 in periods of post-treatment residual gametocytaemia. METHODS: A cohort of 100 P. falciparum infected, gametocyte positive individuals were treated with or without the gametocytocidal drug primaquine (PQ), alongside standard artemisinin-based combination therapy (ACT), in the context of a randomised clinical trial in Ouelessebougou, Mali. A quantitative ELISA was used to measure levels of HRP-2, and compared time to test negativity using a standard and ultra-sensitive RDT (uRDT) between residual gametocyte positive and negative groups. RESULTS: Time to test negativity was longest by uRDT, followed by ELISA and then standard RDT. No significant difference in time to negativity was found between the treatment groups with and without residual gametocytes: uRDT (HR 0.79 [95% CI 0.52-1.21], p = 0.28), RDT (HR 0.77 [95% CI 0.51-1.15], p = 0.20) or ELISA (HR 0.88 [95% CI 0.59-1.32], p = 0.53). Similarly, no difference was observed when adjusting for baseline asexual parasite density. Quantified levels of HRP-2 over time were similar between groups, with differences attributable to asexual parasite densities. Furthermore, no difference in levels of HRP-2 was found between individuals who were or were not infectious to mosquitoes (OR 1.19 [95% CI 0.98-1.46], p = 0.077). CONCLUSIONS: Surviving sexual stage parasites after standard ACT treatment do not contribute to the persistence of HRP-2 antigenaemia, and appear to have little impact on RDT results.


Asunto(s)
Plasmodium falciparum , Humanos , Malí
4.
Lancet Microbe ; 3(5): e336-e347, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544095

RESUMEN

BACKGROUND: Tafenoquine was recently approved as a prophylaxis and radical cure for Plasmodium vivax infection, but its Plasmodium falciparum transmission-blocking efficacy is unclear. We aimed to establish the efficacy and safety of three single low doses of tafenoquine in combination with dihydroartemisinin-piperaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: In this four-arm, single-blind, phase 2, randomised controlled trial, participants were recruited at the Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako in Mali. Eligible participants were aged 12-50 years, with asymptomatic P falciparum microscopy-detected gametocyte carriage, had a bodyweight of 80 kg or less, and had no clinical signs of malaria defined by fever. Participants were randomly assigned (1:1:1:1) to standard treatment with dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus a single dose of tafenoquine (in solution) at a final dosage of 0·42 mg/kg, 0·83 mg/kg, or 1·66 mg/kg. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. Dihydroartemisinin-piperaquine was administered as oral tablets over 3 days (day 0, 1, and 2), as per manufacturer instructions. A single dose of tafenoquine was administered as oral solution on day 0 in parallel with the first dose of dihydroartemisinin-piperaquine. Tafenoquine dosing was based on bodyweight to standardise efficacy and risk variance. The primary endpoint, assessed in the per-protocol population, was median percentage change in mosquito infection rate 7 days after treatment compared with baseline. Safety endpoints included frequency and incidence of adverse events. The final follow-up visit was on Dec 23, 2021; the trial is registered with ClinicalTrials.gov, NCT04609098. FINDINGS: From Oct 29 to Nov 25, 2020, 1091 individuals were screened for eligibility, 80 of whom were enrolled and randomly assigned (20 per treatment group). Before treatment, 53 (66%) individuals were infectious to mosquitoes, infecting median 12·50% of mosquitoes (IQR 3·64-35·00). Within-group reduction in mosquito infection rate on day 7 was 79·95% (IQR 57·15-100; p=0·0005 for difference from baseline) following dihydroartemisinin-piperaquine only, 100% (98·36-100; p=0·0005) following dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg, 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg, and 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg. 55 (69%) of 80 participants had a total of 94 adverse events over the course of the trial; 86 (92%) adverse events were categorised as mild, seven (7%) as moderate, and one (1%) as severe. The most common treatment-related adverse event was mild or moderate headache, which occurred in 15 (19%) participants (dihydroartemisinin-piperaquine n=2; dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg n=6; dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg n=3; and dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg n=4). No serious adverse events occurred. No significant differences in the incidence of all adverse events (p=0·73) or treatment-related adverse events (p=0·62) were observed between treatment groups. INTERPRETATION: Tafenoquine was well tolerated at all doses and accelerated P falciparum gametocyte clearance. All tafenoquine doses showed improved transmission reduction at day 7 compared with dihydroartemisinin-piperaquine alone. These data support the case for further research on tafenoquine as a transmission-blocking supplement to standard antimalarials. FUNDING: Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Portuguese, Spanish and Swahili translations of the abstract see Supplementary Materials section.


Asunto(s)
Artemisininas , Malaria Falciparum , Malaria , Aminoquinolinas , Animales , Artemisininas/efectos adversos , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malí/epidemiología , Piperazinas , Plasmodium falciparum , Quinolinas , Método Simple Ciego
5.
Lancet Microbe ; 3(1): e41-e51, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028628

RESUMEN

BACKGROUND: Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS: We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS: Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION: These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATIONS: For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section.


Asunto(s)
Antimaláricos , Malaria Falciparum , Adolescente , Adulto , Animales , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Artesunato/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Humanos , Malaria Falciparum/prevención & control , Malí/epidemiología , Persona de Mediana Edad , Naftiridinas/uso terapéutico , Piperazinas , Primaquina/uso terapéutico , Quinolinas , Método Simple Ciego , Adulto Joven
6.
Malar J ; 20(1): 23, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413417

RESUMEN

BACKGROUND: More than 200 million people live in areas of highly seasonal malaria transmission where Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) was recommended in 2012 by WHO. This strategy is now implemented widely and protected more than 19 million children in 2018. It was previously reported that exposure to SMC reduced antibody levels to AMA1, MSP-142 and CSP, but the duration of exposure to SMC up to three 3 years, had no effect on antibody levels to MSP-142 and CSP. METHODS: In 2017, a cross-sectional survey was carried out 1 month after the last dose of SMC had been given to children aged 4-5 years randomly selected from areas where SMC had been given for 2 or 4 years during the malaria transmission season. A total of 461 children were enrolled, 242 children in areas where SMC had been implemented for 4 years and 219 children in areas where SMC had been implemented for 2 years. Antibody extracted from dry blood spots was used to measure IgG levels to the malaria antigens CSP, MSP-142 and AMA1 by ELISA. RESULTS: The prevalence of antibodies to MSP-142 was similar in children who had received SMC for 4 years compared to those who had received SMC for only 2 years (85.1 vs 86.0%, ajusted odd ratio (aOR) = 1.06, 95% confidence intervals (CI 0.62-1.80), p = 0.80). The prevalence of antibodies to AMA-1 and to CSP was not lower in children who received SMC for 4 years compared to those who had received SMC for only 2 years (95.3 vs 88.8%, aOR = 3.16, 95% CI 1.44-6.95, p = 0.004 for AMA-1; and 91.2 vs 81.9%, aOR = 3.14, 95% CI 1.70-5.76, p < 0.001 for CSP). Median antibody levels for anti-MSP-142 IgG were not significatively inferior in children who had received SMC for four rather than 2 years (0.88 (IQR: 0.64-1.15) and 0.95 ((0.68-1.15), respectively), anti-CSP (1.30 (1.00-1.56) and 1.17 (0.87-1.47)), and anti-AMA-1 (1.45 (1.24-1.68) and 1.41 (1.17-1.64)). CONCLUSION: In an area of high seasonal malaria transmission, children who had received SMC for 4 years did not had lower seropositivity or antibody levels to AMA1, MSP-142 and CSP compared to children who had received SMC for only 2 years suggesting that children who have received SMC for 4 years may not be more at risk of malaria after the cessation of SMC than children who have received SMC for a shorter period.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Antimaláricos/uso terapéutico , Quimioprevención/estadística & datos numéricos , Malaria/prevención & control , Plasmodium falciparum/inmunología , Malí
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...