Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239904

RESUMEN

First-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. One such example is the allopolyploid model species Arabidopsis suecica which originated c. 16 000 generations ago. We present here a comparison of meiosis and its outcomes in naturally evolved and first-generation 'synthetic' A. suecica using a combination of cytological and genomic approaches. We show that while meiosis in natural lines is largely diploid-like, synthetic lines have high levels of meiotic errors including incomplete synapsis and nonhomologous crossover formation. Whole-genome re-sequencing of progeny revealed 20-fold higher levels of homoeologous exchange and eightfold higher aneuploidy originating from synthetic parents. Homoeologous exchanges showed a strong distal bias and occurred predominantly in genes, regularly generating novel protein variants. We also observed that homoeologous exchanges can generate megabase scale INDELs when occurring in regions of inverted synteny. Finally, we observed evidence of sex-specific differences in adaptation to polyploidy with higher success in reciprocal crosses to natural lines when synthetic plants were used as the female parent. Our results directly link cytological phenotypes in A. suecica with their genomic outcomes, demonstrating that homoeologous crossovers underlie genomic instability in neo-allopolyploids and are more distally biased than homologous crossovers.

2.
Plants (Basel) ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674470

RESUMEN

Peatlands have become a focal point in climate mitigation strategies as these ecosystems have significant carbon sequestration capacities when healthy but release CO2 and other greenhouse gases when damaged. However, as drought episodes become more frequent and prolonged, organisms key to the functioning of some peatlands are increasingly under pressure from desiccation. The Sphagnum mosses, which tend to keep their ecosystem waterlogged and many of whom promote peat formation, are only mildly desiccation-tolerant in comparison to other mosses. The role of Sphagnum anatomy and colony structure is poorly understood in the context of desiccation resilience. Using four different Sphagnum species belonging to four different subgenera and positions along the gradient of the water table, we show that plant morphological traits and colony density are important determinants of water storage capacity. Our results show that, as previously postulated, the majority of the water is stored in an easily exchangeable form, probably extracellularly, and that plant morphological traits, specifically the type and presence of branches, are major contributors to water storage and can explain some of the interspecies variation. We also show that plant density is another important determinant for water storage capacity as higher densities hold larger quantities of water per unit of biomass for all four species, which increases resilience to desiccation. The results presented here suggest that species choice and planting density should receive more attention when considering peatland restoration strategies.

3.
Plant J ; 111(4): 1110-1122, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759495

RESUMEN

Polyploidy is a major force shaping eukaryote evolution but poses challenges for meiotic chromosome segregation. As a result, first-generation polyploids often suffer from more meiotic errors and lower fertility than established wild polyploid populations. How established polyploids adapt their meiotic behaviour to ensure genome stability and accurate chromosome segregation remains an active research question. We present here a cytological description of meiosis in the model allopolyploid species Arabidopsis suecica (2n = 4x = 26). In large part meiosis in A. suecica is diploid-like, with normal synaptic progression and no evidence of synaptic partner exchanges. Some abnormalities were seen at low frequency, including univalents at metaphase I, anaphase bridges and aneuploidy at metaphase II; however, we saw no evidence of crossover formation occurring between non-homologous chromosomes. The crossover number in A. suecica is similar to the combined number reported from its diploid parents Arabidopsis thaliana (2n = 2x = 10) and Arabidopsis arenosa (2n = 2x = 16), with an average of approximately 1.75 crossovers per chromosome pair. This contrasts with naturally evolved autotetraploid A. arenosa, where accurate chromosome segregation is achieved by restricting crossovers to approximately 1 per chromosome pair. Although an autotetraploid donor is hypothesized to have contributed the A. arenosa subgenome to A. suecica, A. suecica harbours diploid A. arenosa variants of key meiotic genes. These multiple lines of evidence suggest that meiosis in the recently evolved allopolyploid A. suecica is essentially diploid like, with meiotic adaptation following a very different trajectory to that described for autotetraploid A. arenosa.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Diploidia , Genoma de Planta , Meiosis/genética , Poliploidía
4.
J Exp Bot ; 73(13): 4576-4591, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35383351

RESUMEN

Mosses of the genus Sphagnum are the main components of peatlands, a major carbon-storing ecosystem. Changes in precipitation patterns are predicted to affect water relations in this ecosystem, but the effect of desiccation on the physiological and molecular processes in Sphagnum is still largely unexplored. Here we show that different Sphagnum species have differential physiological and molecular responses to desiccation but, surprisingly, this is not directly correlated with their position in relation to the water table. In addition, the expression of drought responsive genes is increased upon water withdrawal in all species. This increase in gene expression is accompanied by an increase in abscisic acid (ABA), supporting a role for ABA during desiccation responses in Sphagnum. Not only do ABA levels increase upon desiccation, but Sphagnum plants pre-treated with ABA display increased tolerance to desiccation, suggesting that ABA levels play a functional role in the response. In addition, many of the ABA signalling components are present in Sphagnum and we demonstrate, by complementation in Physcomitrium patens, that Sphagnum ABI3 is functionally conserved. The data presented here, therefore, support a conserved role for ABA in desiccation responses in Sphagnum.


Asunto(s)
Ácido Abscísico , Sphagnopsida , Ácido Abscísico/metabolismo , Desecación , Ecosistema , Suelo , Sphagnopsida/metabolismo , Agua/metabolismo
5.
Plant Cell ; 33(7): 2296-2319, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34009390

RESUMEN

Flower development is an important determinant of grain yield in crops. In wheat (Triticum spp.), natural variation for the size of spikelet and floral organs is particularly evident in Triticum turgidum ssp. polonicum (also termed Triticum polonicum), a tetraploid subspecies of wheat with long glumes, lemmas, and grains. Using map-based cloning, we identified VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), which encodes a MADS-box transcription factor belonging to the SHORT VEGETATIVE PHASE family, as the gene underlying the T. polonicum long-glume (P1) locus. The causal P1 mutation is a sequence rearrangement in intron-1 that results in ectopic expression of the T. polonicum VRT-A2 allele. Based on allelic variation studies, we propose that the intron-1 mutation in VRT-A2 is the unique T. polonicum subspecies-defining polymorphism, which was later introduced into hexaploid wheat via natural hybridizations. Near-isogenic lines differing for the P1 locus revealed a gradient effect of P1 across spikelets and within florets. Transgenic lines of hexaploid wheat carrying the T. polonicum VRT-A2 allele show that expression levels of VRT-A2 are highly correlated with spike, glume, grain, and floral organ length. These results highlight how changes in expression profiles, through variation in cis-regulation, can affect agronomic traits in a dosage-dependent manner in polyploid crops.


Asunto(s)
Poliploidía , Triticum/genética , Expresión Génica Ectópica/genética , Expresión Génica Ectópica/fisiología , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plants (Basel) ; 10(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33921967

RESUMEN

Sphagnum peatmosses play an important part in water table management of many peatland ecosystems. Keeping the ecosystem saturated, they slow the breakdown of organic matter and release of greenhouse gases, facilitating peatland's function as a carbon sink rather than a carbon source. Although peatland monitoring and restoration programs have increased recently, there are few tools to quantify traits that Sphagnum species display in their ecosystems. Colony density is often described as an important determinant in the establishment and performance in Sphagnum but detailed evidence for this is limited. In this study, we describe an image analysis pipeline that accurately annotates Sphagnum capitula and estimates plant density using open access computer vision packages. The pipeline was validated using images of different Sphagnum species growing in different habitats, taken on different days and with different smartphones. The developed pipeline achieves high accuracy scores, and we demonstrate its utility by estimating colony densities in the field and detecting intra and inter-specific colony densities and their relationship with habitat. This tool will enable ecologists and conservationists to rapidly acquire accurate estimates of Sphagnum density in the field without the need of specialised equipment.

7.
Front Plant Sci ; 11: 586870, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240303

RESUMEN

Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.

8.
Nat Commun ; 11(1): 3670, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728126

RESUMEN

Our understanding of polyploid genome evolution is constrained because we cannot know the exact founders of a particular polyploid. To differentiate between founder effects and post polyploidization evolution, we use a pan-genomic approach to study the allotetraploid Brachypodium hybridum and its diploid progenitors. Comparative analysis suggests that most B. hybridum whole gene presence/absence variation is part of the standing variation in its diploid progenitors. Analysis of nuclear single nucleotide variants, plastomes and k-mers associated with retrotransposons reveals two independent origins for B. hybridum, ~1.4 and ~0.14 million years ago. Examination of gene expression in the younger B. hybridum lineage reveals no bias in overall subgenome expression. Our results are consistent with a gradual accumulation of genomic changes after polyploidization and a lack of subgenome expression dominance. Significantly, if we did not use a pan-genomic approach, we would grossly overestimate the number of genomic changes attributable to post polyploidization evolution.


Asunto(s)
Brachypodium/genética , Diploidia , Evolución Molecular , Genoma de Planta , Poliploidía , Cromosomas de las Plantas/genética , Genoma del Cloroplasto , Genómica , Hibridación Genética , Filogenia , Polimorfismo de Nucleótido Simple , Retroelementos/genética , Especificidad de la Especie
9.
Front Plant Sci ; 11: 614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508865

RESUMEN

The CRISPR/Cas9 system enables precise genome editing and is a useful tool for functional genomic studies. Here we report a detailed protocol for targeted genome editing in the model grass Brachypodium distachyon and its allotetraploid relative B. hybridum, describing gRNA design, a transient protoplast assay to test gRNA efficiency, Agrobacterium-mediated transformation and the selection and analysis of regenerated plants. In B. distachyon, we targeted the gene encoding phytoene desaturase (PDS), which is a crucial enzyme in the chlorophyll biosynthesis pathway. The albino phenotype of mutants obtained confirmed the effectiveness of the protocol for functional gene analysis. Additionally, we targeted two genes related to cell wall maintenance, encoding a fasciclin-like arabinogalactan protein (FLA) and a pectin methylesterase (PME), also in B. distachyon. Two genes encoding cyclin-dependent kinases (CDKG1 and CDKG2), which may be involved in DNA recombination were targeted in both B. distachyon and B. hybridum. Cas9 activity induces mainly insertions or deletions, resulting in frameshift mutations that, may lead to premature stop codons. Because of the close phylogenetic relationship between Brachypodium species and key temperate cereals and forage grasses, this protocol should be easily adapted to target genes underpinning agronomically important traits.

10.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033195

RESUMEN

Brachypodium distachyon has become an excellent model for plant breeding and bioenergy grasses that permits many fundamental questions in grass biology to be addressed. One of the constraints to performing research in many grasses has been the difficulty with which they can be genetically transformed and the generally low frequency of such transformations. In this review, we discuss the contribution that transformation techniques have made in Brachypodium biology as well as how Brachypodium could be used to determine the factors that might contribute to transformation efficiency. In particular, we highlight the latest research on the mechanisms that govern the gradual loss of embryogenic potential in a tissue culture and propose using B. distachyon as a model for other recalcitrant monocots.


Asunto(s)
Brachypodium/genética , Técnicas de Cultivo de Tejidos/métodos , Proteínas de Plantas/genética , Técnicas de Embriogénesis Somática de Plantas/métodos , Plantas Modificadas Genéticamente/genética , Transformación Genética/genética
11.
Plant Cell ; 32(4): 1308-1322, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047050

RESUMEN

The Arabidopsis (Arabidopsis thaliana) cyclin-dependent kinase G1 (CDKG1) is necessary for recombination and synapsis during male meiosis at high ambient temperature. In the cdkg1-1 mutant, synapsis is impaired and there is a dramatic reduction in the number of class I crossovers, resulting in univalents at metaphase I and pollen sterility. Here, we demonstrate that CDKG1 is necessary for the processing of recombination intermediates in the canonical ZMM recombination pathway and that loss of CDKG1 results in increased class II crossovers. While synapsis and events associated with class I crossovers are severely compromised in a cdkg1-1 mutant, they can be restored by increasing the number of recombination intermediates in the double cdkg1-1 fancm-1 mutant. Despite this, recombination intermediates are not correctly resolved, leading to the formation of chromosome aggregates at metaphase I. Our results show that CDKG1 acts early in the recombination process and is necessary to stabilize recombination intermediates. Finally, we show that the effect on recombination is not restricted to meiosis and that CDKG1 is also required for normal levels of DNA damage-induced homologous recombination in somatic tissues.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Quinasas Ciclina-Dependientes/metabolismo , Recombinación Homóloga/genética , Meiosis , Proteínas de Arabidopsis/genética , Emparejamiento Cromosómico , Cromosomas de las Plantas/genética , Intercambio Genético , Quinasas Ciclina-Dependientes/genética , Modelos Biológicos , Mutación/genética , Fenotipo
12.
Plant J ; 99(1): 98-111, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30868647

RESUMEN

Wheat and barley are two of the founder crops domesticated in the Fertile Crescent, and currently represent crops of major economic importance in temperate regions. Due to impacts on yield, quality and end-use, grain morphometric traits remain an important goal for modern breeding programmes and are believed to have been selected for by human populations. To directly and accurately assess the three-dimensional (3D) characteristics of grains, we combine X-ray microcomputed tomography (µCT) imaging techniques with bespoke image analysis tools and mathematical modelling to investigate how grain size and shape vary across wild and domesticated wheat and barley. We find that grain depth and, to a lesser extent, width are major drivers of shape change and that these traits are still relatively plastic in modern bread wheat varieties. Significant changes in grain depth are also observed to be associated with differences in ploidy. Finally, we present a model that can accurately predict the wild or domesticated status of a grain from a given taxa based on the relationship between three morphometric parameters (length, width and depth) and suggest its general applicability to both archaeological identification studies and breeding programmes.


Asunto(s)
Grano Comestible/metabolismo , Productos Agrícolas/metabolismo , Domesticación , Hordeum/metabolismo , Ploidias , Análisis de Componente Principal , Triticum/metabolismo , Microtomografía por Rayos X
13.
Front Plant Sci ; 10: 1680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038671

RESUMEN

The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-ß and FLM-δ are the most representative. While FLM-ß codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-ß and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-ß expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.

14.
J Cereal Sci ; 82: 16-24, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30245543

RESUMEN

Many shrunken endosperm mutants of barley (Hordeum vulgare L.) have been described and several of these are known to have lesions in starch biosynthesis genes. Here we confirm that one type of shrunken endosperm mutant, lys3 (so called because it was first identified as a high-lysine mutant) has an additional phenotype: as well as shrunken endosperm it also has enlarged embryos. The lys3 embryos have a dry weight that is 50-150% larger than normal. Observations of developing lys3 embryos suggest that they undergo a form of premature germination and the mature lys3 grains show reduced dormancy. In many respects, the phenotype of barley lys3 is similar to that of rice GIANT EMBRYO mutants (affected in the OsGE gene). However, the barley orthologue of OsGE is located on a different chromosome from Lys3. Together these results suggest that the gene underlying Lys3 is unlikely to encode a starch biosynthesis protein but rather a protein influencing grain development.

15.
Plant J ; 94(6): 1010-1022, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29602264

RESUMEN

The ability to adapt growth and development to temperature variations is crucial to generate plant varieties resilient to predicted temperature changes. However, the mechanisms underlying plant response to progressive increases in temperature have just started to be elucidated. Here, we report that the cyclin-dependent kinase G1 (CDKG1) is a central element in a thermo-sensitive mRNA splicing cascade that transduces changes in ambient temperature into differential expression of the fundamental spliceosome component, ATU2AF65A. CDKG1 is alternatively spliced in a temperature-dependent manner. We found that this process is partly dependent on both the cyclin-dependent kinase G2 (CDKG2) and the interacting co-factor CYCLIN L1 (CYCL1), resulting in two distinct messenger RNAs. The relative abundance of both CDKG1 transcripts correlates with ambient temperature and possibly with different expression levels of the associated protein isoforms. Both CDKG1 alternative transcripts are necessary to fully complement the expression of ATU2AF65A across the temperature range. Our data support a previously unidentified temperature-dependent mechanism based on the alternative splicing (AS) of CDKG1 and regulated by CDKG2 and CYCL1. We propose that changes in ambient temperature affect the relative abundance of CDKG1 transcripts, and this in turn translates into differential CDKG1 protein expression coordinating the AS of ATU2AF65A.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fraccionamiento Celular , Regulación de la Expresión Génica de las Plantas/genética , Factores de Empalme de ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Empalmosomas/metabolismo , Temperatura
16.
Plant Methods ; 13: 76, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118820

RESUMEN

Background: Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. Results: In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (µCT). The image analysis pipeline developed automatically identifies plant material of interest in µCT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain number under mild stress. Conclusions: Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the effects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.

17.
Plant Physiol ; 172(1): 128-40, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27388680

RESUMEN

Eukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5'-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F. CDKA phosphorylates eIF4A on a conserved threonine residue (threonine-164) within the RNA-binding motif 1b TPGR. In vivo, a phospho-null (APGR) variant of the Arabidopsis (Arabidopsis thaliana) eIF4A1 protein retains the ability to functionally complement a mutant (eif4a1) plant line lacking eIF4A1, whereas a phosphomimetic (EPGR) variant fails to complement. The phospho-null variant (APGR) rescues the slow growth rate of roots and rosettes, together with the ovule-abortion and late-flowering phenotypes. In vitro, wild-type recombinant eIF4A1 and its phospho-null variant both support translation in cell-free wheat germ extracts dependent upon eIF4A, but the phosphomimetic variant does not support translation and also was deficient in ATP hydrolysis and helicase activity. These observations suggest a mechanism whereby CDK phosphorylation has the potential to down-regulate eIF4A activity and thereby affect translation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proliferación Celular/genética , Quinasas Ciclina-Dependientes/genética , Factor 4A Eucariótico de Iniciación/genética , ARN Helicasas/genética , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Línea Celular , Quinasas Ciclina-Dependientes/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , ARN Helicasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Treonina/genética , Treonina/metabolismo , Técnicas del Sistema de Dos Híbridos
18.
New Phytol ; 208(2): 421-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26255865

RESUMEN

Barley (Hordeum vulgare) is a crop of global significance. However, a third of the genes of barley are largely inaccessible to conventional breeding programmes as crossovers are localised to the ends of the chromosomes. This work examines whether crossovers can be shifted to more proximal regions simply by elevating growth temperature. We utilised a genome-wide marker set for linkage analysis combined with cytological mapping of crossover events to examine the recombination landscape of plants grown at different temperatures. We found that barley shows heterochiasmy, that is, differences between female and male recombination frequencies. In addition, we found that elevated temperature significantly changes patterns of recombination in male meiosis only, with a repositioning of Class I crossovers determined by cytological mapping of HvMLH3 foci. We show that the length of synaptonemal complexes in male meiocytes increases in response to temperature. The results demonstrate that the distribution of crossover events are malleable and can be shifted to proximal regions by altering the growth temperature. The shift in recombination is the result of altering the distribution of Class I crossovers, but the higher recombination at elevated temperatures is potentially not the result of an increase in Class I events.


Asunto(s)
Hordeum/genética , Recombinación Genética , Temperatura , Núcleo Celular/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Ligamiento Genético , Sitios Genéticos , Hordeum/citología , Meiosis , Complejo Sinaptonémico
19.
New Phytol ; 203(4): 1194-1207, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24902892

RESUMEN

Plant root system plasticity is critical for survival in changing environmental conditions. One important aspect of root architecture is lateral root development, a complex process regulated by hormone, environmental and protein signalling pathways. Here we show, using molecular genetic approaches, that the MYB transcription factor AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. We identify AtMYB93 as an interaction partner of the lateral-root-promoting ARABIDILLO proteins. Atmyb93 mutants have faster lateral root developmental progression and enhanced lateral root densities, while AtMYB93-overexpressing lines display the opposite phenotype. AtMYB93 is expressed strongly, specifically and transiently in the endodermal cells overlying early lateral root primordia and is additionally induced by auxin in the basal meristem of the primary root. Furthermore, Atmyb93 mutant lateral root development is insensitive to auxin, indicating that AtMYB93 is required for normal auxin responses during lateral root development. We propose that AtMYB93 is part of a novel auxin-induced negative feedback loop stimulated in a select few endodermal cells early during lateral root development, ensuring that lateral roots only develop when absolutely required. Putative AtMYB93 homologues are detected throughout flowering plants and represent promising targets for manipulating root systems in diverse crop species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Flores/efectos de los fármacos , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
Proc Natl Acad Sci U S A ; 111(6): 2182-7, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469829

RESUMEN

The Arabidopsis cyclin-dependent kinase G (CDKG) gene defines a clade of cyclin-dependent protein kinases related to CDK10 and CDK11, as well as to the enigmatic Ph1-related kinases that are implicated in controlling homeologous chromosome pairing in wheat. Here we demonstrate that the CDKG1/CYCLINL complex is essential for synapsis and recombination during male meiosis. A transfer-DNA insertional mutation in the cdkg1 gene leads to a temperature-sensitive failure of meiosis in late Zygotene/Pachytene that is associated with defective formation of the synaptonemal complex, reduced bivalent formation and crossing over, and aneuploid gametes. An aphenotypic insertion in the cyclin L gene, a cognate cyclin for CDKG, strongly enhances the phenotype of cdkg1-1 mutants, indicating that this cdk-cyclin complex is essential for male meiosis. Since CYCLINL, CDKG, and their mammalian homologs have been previously shown to affect mRNA processing, particularly alternative splicing, our observations also suggest a mechanism to explain the widespread phenomenon of thermal sensitivity in male meiosis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Emparejamiento Cromosómico/fisiología , Calor , Polen , Proteínas Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Cromosomas de las Plantas , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...