Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 26(1): 161-176, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38015510

RESUMEN

We report, for the first time, a multimodal investigation of current crude oil reprocessing and storage sites to assess their impact on the environment after 50 years of continuous operation. We have adopted a dual approach to investigate potential soil contamination. The first approach uses conventional analytical techniques i.e. energy dispersive X-ray fluorescence (ED-XRF) for metal analysis, and a complementary metabolomic investigation using hydrophilic liquid interaction chromatography hi-resolution mass spectrometry (HILIC-MS) for organic contaminants. Secondly, the deployment of an unmanned aerial vehicle (UAV) with a multispectral image (MSI) camera, for the remote sensing of vegetation stress, as a proxy for sub-surface soil contamination. The results identified high concentrations of barium (mean 21 017 ± 5950 µg g-1, n = 36) as well as metabolites derived from crude oil (polycyclic aromatic hydrocarbons), cleaning processes (surfactants) and other organic pollutants (e.g. pesticides, plasticizers and pharmaceuticals) in the reprocessing site. This data has then been correlated, with post-flight data analysis derived vegetation indices (NDVI, GNDVI, SAVI and Cl green VI), to assess the potential to identify soil contamination because of vegetation stress. It was found that strong correlations exist (an average R2 of >0.68) between the level of soil contamination and the ground cover vegetation. The potential to deploy aerial remote sensing techniques to provide an initial survey, to inform decision-making, on suspected contaminated land sites can have global implications.


Asunto(s)
Petróleo , Tecnología de Sensores Remotos , Suelo
2.
PLoS One ; 18(11): e0294184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37948466

RESUMEN

The flowering stage of oilseed rape (Brassica napus L.) is of vital interest in precision agriculture. It has been shown that data describing the flower production of oilseed rape (OSR), at stage 3, in spring can be used to predict seed yield at harvest. Traditional field-based techniques for assessing OSR flowers are based on a visual assessment which is subjective and time consuming. However, a high throughput phenotyping technique, using an unmanned aerial vehicle (UAV) with multispectral image (MSI) camera, was used to investigate the growth stages of OSR (in terms of crop height) and to quantify its flower production. A simplified approach using a normalised difference yellowness index (NDYI) was coupled with an iso-cluster classification method to quantify the number of OSR flower pixels and incorporate the data into an OSR seed yield estimation. The estimated OSR seed yield showed strong correlation with the actual OSR seed yield (R2 = 0.86), as determined using in-situ sensors mounted on the combine harvester. Also, using our approach allowed the variation in crop height to be assessed across all growing stages; the maximum crop height of 1.35 m OSR was observed at the flowering stage. This methodology is proposed for effectively predicting seed yield 3 months prior to harvesting.


Asunto(s)
Brassica napus , Dispositivos Aéreos No Tripulados , Agricultura , Flores , Semillas
3.
PLoS One ; 16(11): e0260056, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780569

RESUMEN

An area of ancient and semi-natural woodland (ASNW) has been investigated by applied aerial spectroscopy using an unmanned aerial vehicle (UAV) with multispectral image (MSI) camera. A novel normalised difference spectral index (NDSI) algorithm was developed using principal component analysis (PCA). This novel NDSI was then combined with a simple segmentation method of thresholding and applied for the identification of native tree species as well as the overall health of the woodland. Using this new approach allowed the identification of trees at canopy level, across 7.4 hectares (73,934 m2) of ASNW, as oak (53%), silver birch (37%), empty space (9%) and dead trees (1%). This UAV derived data was corroborated, for its accuracy, by a statistically valid ground-level field study that identified oak (47%), silver birch (46%) and dead trees (7.4%). This simple innovative approach, using a low-cost multirotor UAV with MSI camera, is both rapid to deploy, was flown around 100 m above ground level, provides useable high resolution (5.3 cm / pixel) data within 22 mins that can be interrogated using readily available PC-based software to identify tree species. In addition, it provides an overall oversight of woodland health and has the potential to inform a future woodland regeneration strategy.


Asunto(s)
Tecnología de Sensores Remotos/instrumentación , Análisis Espectral/instrumentación , Árboles/clasificación , Algoritmos , Conservación de los Recursos Naturales , Inglaterra , Bosques , Análisis de Componente Principal , Dispositivos Aéreos No Tripulados
4.
Acta Crystallogr C Struct Chem ; 71(Pt 4): 276-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25836285

RESUMEN

Four new cocrystals of pyrimidin-2-amine and propane-1,3-dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin-2-amine-glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin-2-amine-glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal-salt bis(2-aminopyrimidinium) glutarate-glutaric acid (1/2), 2C4H6N3(+)·C6H6O4(2-)·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal-salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)-(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen-bond patterns show certain similarities in all four structures.

5.
J Chem Phys ; 129(12): 124715, 2008 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19045056

RESUMEN

For small confinement volumes, phase transition temperatures are determined by the scarcity of the crystallizing material, rather than the magnitude of the energy barrier, as the supply of molecules undergoing the phase transition can be depleted before a stable nucleus is attained. We show this for the case of crystallization from the melt and from the solution by using a simple model based on an extended classical nucleation theory. This has important implications because it enables a simple and direct measurement of the critical nucleus size in crystallization. It also highlights that predicting the observable melting points of nanoparticles by using the Gibbs-Thomson equation can lead to substantial errors.

6.
Langmuir ; 23(13): 7286-92, 2007 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-17516667

RESUMEN

In crystallization, the critical nucleus size is of pivotal importance. Above this size, it is favorable for the new crystalline phase to form; below this size, the clusters will tend to dissolve rather than grow. To date, there has been no direct method for measuring the critical nucleus size. Instead, the size is typically calculated from the variation of crystallization rates with temperature. This involves using bulk values of the interfacial tension and enthalpy of fusion, which are inappropriate for small critical nucleus sizes. Here, we present a direct method for measuring the size of the critical nucleus, based on observing crystallization temperatures of materials within microemulsions. Using this approach, the number of molecules in the critical nucleus can be found simply by measuring the droplet size. Data on the freezing of water in water-in-oil microemulsions with and without the nucleating agent, heptacosanol, are presented to support our hypothesis. The results show that the critical nucleus contains 90-350 ice molecules for water pool radii of approximately 1.2-1.8 nm for the heptacosanol-doped microemulsions in which heterogeneous nucleation is initiated at the droplet interface. For the microemulsions without heptacosanol, the critical nucleus contains 70-210 ice molecules for water pool radii of approximately 1.2-1.8 nm. The smaller values arise because homogeneous nucleation occurs and therefore the crystallization temperatures are lower. We can also determine how bulk properties are perturbed at the nanoscale, and we find that the ratio of the ice-water interfacial tension to the enthalpy of fusion decreases significantly for water pool radii that are <2 nm.


Asunto(s)
Heptanos/química , Hexosas/química , Modelos Químicos , Succinatos/química , Cristalización , Calor , Agua/química
7.
J Am Chem Soc ; 128(24): 7718-9, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16771468

RESUMEN

We have obtained both porous and dendritic, intricate morphology crystals of beta-glycine by the novel and simple method of emulsion droplet adhesion and encapsulation. By using octanoic acid emulsified with nonionic surfactants, the adhesion of the emulsion droplets can be so strong that, remarkably, crystal growth often proceeds around the droplets, leading to their inclusion within the single crystals. Consequently, porous single crystals can be produced with the pore diameters ( approximately 10-25 mum) corresponding to the emulsion droplet sizes. Highly intricate, dendritic morphologies for glycine were obtained by increasing the surfactant concentration in the emulsions to 50%. In this case, partial droplet encapsulation results in crystal dendrites growing on either side of adsorbed droplets, with the complex morphologies developing due to the high density of dendritic branches that can occur. These intricate morphologies are in stark contrast to the facetted crystals that normally develop at these low supersaturations in the absence of octanoic acid droplets. This study demonstrates that complex architectures can be attained by using simple emulsion systems and tuning the degree of droplet adhesion.


Asunto(s)
Caprilatos/química , Cristalización/métodos , Glicina/química , Agua/química , Emulsiones , Soluciones/química , Propiedades de Superficie , Tensoactivos/química , Temperatura , Adherencias Tisulares
8.
J Am Chem Soc ; 127(34): 11894-5, 2005 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16117500

RESUMEN

Highly anomalous crystallization behavior has been achieved in phase-inverting emulsion systems by using nonionic surfactants that induce nucleation. In particular, nucleation can be inhibited at the phase inversion, allowing systems held at, or near, this temperature to undergo crystallization either on heating or cooling. This new phenomenon is demonstrated for 27.4 wt % aqueous glycine solutions emulsified in decane using Span 20 Tween 20 blends. The inhibitory effect on interfacial nucleation at/near the phase inversion is readily shown by the maximum in the induction time for crystallization found in systems at/near the phase-inversion temperature. These findings are unprecedented. An extremely rapid rise in nucleation rate is expected on cooling glycine solutions, owing to the associated increase in supersaturation, the driving force for crystallization. The origin of this highly anomalous behavior is thought to be the low droplet interfacial tension, gammaow, that occurs at the phase-inversion temperature, which results primarily in a substantially increased contact angle between the glycine critical nucleus and the droplet interface. This may present a paradigm shift in crystallization strategies through the use of tunable contact-angle nucleators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...