Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 610(7932): 519-525, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261548

RESUMEN

Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1-8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11-making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father-daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals' genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range.


Asunto(s)
Hombre de Neandertal , Animales , Femenino , Humanos , Cuevas , Genoma/genética , Hibridación Genética , Hombre de Neandertal/genética , Siberia , ADN Mitocondrial/genética , Cromosoma Y/genética , Masculino , Familia , Homocigoto
2.
Mol Ecol Resour ; 22(6): 2196-2207, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35263821

RESUMEN

The use of hybridization capture has enabled a massive upscaling in sample sizes for ancient DNA studies, allowing the analysis of hundreds of skeletal remains or sediments in single studies. Nevertheless, demands in throughput continue to grow, and hybridization capture has become a limiting step in sample preparation due to the large consumption of reagents, consumables and time. Here, we explored the possibility of improving the economics of sample preparation via multiplex capture, that is, the hybridization capture of pools of double-indexed ancient DNA libraries. We demonstrate that this strategy is feasible, at least for small genomic targets such as mitochondrial DNA, if the annealing temperature is increased and PCR cycles are limited in post-capture amplification to avoid index swapping by jumping PCR, which manifests as cross-contamination in resulting sequence data. We also show that the reamplification of double-indexed libraries to PCR plateau before or after hybridization capture can sporadically lead to small, but detectable cross-contamination even if libraries are amplified in separate reactions. We provide protocols for both manual capture and automated capture in 384-well format that are compatible with single- and multiplex capture and effectively suppress cross-contamination and artefact formation. Last, we provide a simple computational method for quantifying cross-contamination due to index swapping in double-indexed libraries, which we recommend using for routine quality checks in studies that are sensitive to cross-contamination.


Asunto(s)
ADN Antiguo , Genómica , ADN Antiguo/análisis , ADN Mitocondrial/genética , Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia de ADN/métodos
3.
Genes (Basel) ; 13(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35052469

RESUMEN

The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.


Asunto(s)
Restos Mortales/metabolismo , Dermatoglifia del ADN/métodos , ADN Antiguo/análisis , Genética Forense , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , ADN Antiguo/aislamiento & purificación , Humanos , Guerra de Corea , Segunda Guerra Mundial
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969841

RESUMEN

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.


Asunto(s)
Cuevas , ADN Antiguo , Fósiles , Hominidae/genética , Hombre de Neandertal/genética , Animales
5.
Nature ; 592(7853): 253-257, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828320

RESUMEN

Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.


Asunto(s)
ADN Antiguo/análisis , Genoma Humano/genética , Hombre de Neandertal/genética , Alelos , Américas/etnología , Animales , Arqueología , Bulgaria/etnología , Cuevas , Asia Oriental/etnología , Femenino , Historia Antigua , Humanos , Masculino , Filogenia
6.
Science ; 372(6542)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33858989

RESUMEN

Bones and teeth are important sources of Pleistocene hominin DNA, but are rarely recovered at archaeological sites. Mitochondrial DNA (mtDNA) has been retrieved from cave sediments but provides limited value for studying population relationships. We therefore developed methods for the enrichment and analysis of nuclear DNA from sediments and applied them to cave deposits in western Europe and southern Siberia dated to between 200,000 and 50,000 years ago. We detected a population replacement in northern Spain about 100,000 years ago, which was accompanied by a turnover of mtDNA. We also identified two radiation events in Neanderthal history during the early part of the Late Pleistocene. Our work lays the ground for studying the population history of ancient hominins from trace amounts of nuclear DNA in sediments.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Animales , Cuevas/química , ADN Mitocondrial/análisis , ADN Mitocondrial/aislamiento & purificación , Sedimentos Geológicos/química , Filogenia , Población/genética , Análisis de Secuencia de ADN , Siberia , España
7.
Science ; 370(6516): 579-583, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122380

RESUMEN

We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry. These segments derive from the same Denisovan admixture event(s) that contributed to present-day mainland Asians but are distinct from the Denisovan DNA segments in present-day Papuans and Aboriginal Australians.


Asunto(s)
Pueblo Asiatico/genética , Evolución Molecular , Hominidae/genética , Animales , ADN Antiguo , Femenino , Humanos , Mongolia , Población , Cráneo
8.
Science ; 369(6501): 282-288, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32409524

RESUMEN

Human genetic history in East Asia is poorly understood. To clarify population relationships, we obtained genome-wide data from 26 ancient individuals from northern and southern East Asia spanning 9500 to 300 years ago. Genetic differentiation in this region was higher in the past than the present, which reflects a major episode of admixture involving northern East Asian ancestry spreading across southern East Asia after the Neolithic, thereby transforming the genetic ancestry of southern China. Mainland southern East Asian and Taiwan Strait island samples from the Neolithic show clear connections with modern and ancient individuals with Austronesian-related ancestry, which supports an origin in southern China for proto-Austronesians. Connections among Neolithic coastal groups from Siberia and Japan to Vietnam indicate that migration and gene flow played an important role in the prehistory of coastal Asia.


Asunto(s)
ADN Antiguo , Genética de Población , Migración Humana , Asia Sudoriental , Pueblo Asiatico/genética , China , Flujo Génico , Genoma Humano , Humanos , Siberia , Vietnam
9.
Mol Ecol Resour ; 20(5): 1228-1247, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32306514

RESUMEN

Species' responses at the genetic level are key to understanding the long-term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high-resolution time-series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species-with small or large genomes-diversity is traditionally assessed using restriction-enzyme-based sequencing. However, age-related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced-representation sequencing and hybridization-capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced-representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference-free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost-efficient, large-scale integration of contemporary and historical specimens for assessment of genome-wide genetic trends over time, independent of genome size and presence of a reference genome.


Asunto(s)
ADN de Plantas/genética , Genética de Población , Genómica , Plantas/genética , Arabidopsis , Cardamine , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN
10.
Sci Adv ; 5(6): eaaw5873, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31249872

RESUMEN

Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals.


Asunto(s)
Núcleo Celular/genética , ADN/genética , Hombre de Neandertal/genética , Animales , Linaje de la Célula/genética , Europa (Continente) , Evolución Molecular , Fósiles , Genoma/genética , Alemania , Mitocondrias/genética
11.
Nat Commun ; 10(1): 274, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700710

RESUMEN

A skullcap found in the Salkhit Valley in northeast Mongolia is, to our knowledge, the only Pleistocene hominin fossil found in the country. It was initially described as an individual with possible archaic affinities, but its ancestry has been debated since the discovery. Here, we determine the age of the Salkhit skull by compound-specific radiocarbon dating of hydroxyproline to 34,950-33,900 Cal. BP (at 95% probability), placing the Salkhit individual in the Early Upper Paleolithic period. We reconstruct the complete mitochondrial genome (mtDNA) of the specimen. It falls within a group of modern human mtDNAs (haplogroup N) that is widespread in Eurasia today. The results now place the specimen into its proper chronometric and biological context and allow us to begin integrating it with other evidence for the human occupation of this region during the Paleolithic, as well as wider Pleistocene sequences across Eurasia.


Asunto(s)
Radioisótopos de Carbono/análisis , ADN Mitocondrial/genética , Fósiles , Hominidae/anatomía & histología , Hominidae/genética , Cráneo/química , Animales , ADN Mitocondrial/química , Genoma Mitocondrial , Humanos , Mongolia , Paleontología , Datación Radiométrica , Cráneo/anatomía & histología
12.
BMC Evol Biol ; 18(1): 156, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30348080

RESUMEN

BACKGROUND: Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? RESULTS: In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. CONCLUSIONS: The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies.


Asunto(s)
Extinción Biológica , Panthera/clasificación , Filogeografía , Animales , Asia , Calibración , ADN Mitocondrial/genética , Europa (Continente) , Genoma Mitocondrial , Panthera/genética , Filogenia
13.
Oncogene ; 37(47): 6136-6151, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29995873

RESUMEN

Recent studies revealed trajectories of mutational events in early melanomagenesis, but the accompanying changes in gene expression are far less understood. Therefore, we performed a comprehensive RNA-seq analysis of laser-microdissected melanocytic nevi (n = 23) and primary melanoma samples (n = 57) and characterized the molecular mechanisms of early melanoma development. Using self-organizing maps, unsupervised clustering, and analysis of pseudotime (PT) dynamics to identify evolutionary trajectories, we describe here two transcriptomic types of melanocytic nevi (N1 and N2) and primary melanomas (M1 and M2). N1/M1 lesions are characterized by pigmentation-type and MITF gene signatures, and a high prevalence of NRAS mutations in M1 melanomas. N2/M2 lesions are characterized by inflammatory-type and AXL gene signatures with an equal distribution of wild-type and mutated BRAF and low prevalence of NRAS mutations in M2 melanomas. Interestingly, N1 nevi and M1 melanomas and N2 nevi and M2 melanomas, respectively, cluster together, but there is no clustering in a stage-dependent manner. Transcriptional signatures of M1 melanomas harbor signatures of BRAF/MEK inhibitor resistance and M2 melanomas harbor signatures of anti-PD-1 antibody treatment resistance. Pseudotime dynamics of nevus and melanoma samples are suggestive for a switch-like immune-escape mechanism in melanoma development with downregulation of immune genes paralleled by an increasing expression of a cell cycle signature in late-stage melanomas. Taken together, the transcriptome analysis identifies gene signatures and mechanisms underlying development of melanoma in early and late stages with relevance for diagnostics and therapy.


Asunto(s)
Melanoma/genética , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Regulación hacia Abajo/genética , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Factor de Transcripción Asociado a Microftalmía/genética , Persona de Mediana Edad , Mutación/genética , Nevo Pigmentado/genética , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética
14.
Science ; 360(6388): 548-552, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29545507

RESUMEN

North Africa is a key region for understanding human history, but the genetic history of its people is largely unknown. We present genomic data from seven 15,000-year-old modern humans, attributed to the Iberomaurusian culture, from Morocco. We find a genetic affinity with early Holocene Near Easterners, best represented by Levantine Natufians, suggesting a pre-agricultural connection between Africa and the Near East. We do not find evidence for gene flow from Paleolithic Europeans to Late Pleistocene North Africans. The Taforalt individuals derive one-third of their ancestry from sub-Saharan Africans, best approximated by a mixture of genetic components preserved in present-day West and East Africans. Thus, we provide direct evidence for genetic interactions between modern humans across Africa and Eurasia in the Pleistocene.


Asunto(s)
Población Negra/genética , Evolución Molecular , Genoma Humano , Genoma Mitocondrial , África del Sur del Sahara , África del Norte , Animales , ADN Antiguo , Femenino , Flujo Génico , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Medio Oriente , Polimorfismo de Nucleótido Simple , Población Blanca
15.
Nature ; 555(7698): 652-656, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29562232

RESUMEN

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Asunto(s)
Genoma/genética , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Filogenia , África/etnología , Animales , Huesos , ADN Antiguo/análisis , Europa (Continente)/etnología , Femenino , Flujo Génico , Genética de Población , Genómica , Humanos , Ácido Hipocloroso , Masculino , Siberia/etnología , Diente
16.
Artículo en Inglés | MEDLINE | ID: mdl-29162497

RESUMEN

Melanoma is one of the most aggressive tumors with a very low survival rate once metastasized. The incidence of newly detected cases increases every year suggesting the necessity of development and application of innovative treatment strategies. Human melanoma develops from melanocytes localized in the epidermis of the skin to malignant tumors because of deregulated effectors influencing several molecular pathways. Despite many advances in describing the molecular changes accompanying melanoma formation, many critical and clinically relevant molecular features of the transformed pigment cells and the underlying mechanisms are largely unknown. To contribute to a better understanding of the molecular processes of melanoma formation, we use a transgenic medaka melanoma model that is well suited for the investigation of melanoma tumor development because fish and human melanocytes are both localized in the epidermis. The purpose of our study was to gain insights into melanoma development from the first steps of tumor formation up to melanoma progression and to identify gene expression patterns that will be useful for monitoring treatment effects in drug screening approaches. Comparing transcriptomes from juvenile fish at the tumor initiating stage with nevi and advanced melanoma of adults, we identified stage specific expression signatures and pathways that are characteristic for the development of medaka melanoma, and are also found in human malignancies.


Asunto(s)
Proteínas de Peces/genética , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Oryzias/genética , Neoplasias Cutáneas/genética , Transcriptoma , Factores de Edad , Animales , Animales Modificados Genéticamente , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias Cutáneas/patología
17.
Curr Biol ; 27(20): 3202-3208.e9, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29033327

RESUMEN

By at least 45,000 years before present, anatomically modern humans had spread across Eurasia [1-3], but it is not well known how diverse these early populations were and whether they contributed substantially to later people or represent early modern human expansions into Eurasia that left no surviving descendants today. Analyses of genome-wide data from several ancient individuals from Western Eurasia and Siberia have shown that some of these individuals have relationships to present-day Europeans [4, 5] while others did not contribute to present-day Eurasian populations [3, 6]. As contributions from Upper Paleolithic populations in Eastern Eurasia to present-day humans and their relationship to other early Eurasians is not clear, we generated genome-wide data from a 40,000-year-old individual from Tianyuan Cave, China, [1, 7] to study his relationship to ancient and present-day humans. We find that he is more related to present-day and ancient Asians than he is to Europeans, but he shares more alleles with a 35,000-year-old European individual than he shares with other ancient Europeans, indicating that the separation between early Europeans and early Asians was not a single population split. We also find that the Tianyuan individual shares more alleles with some Native American groups in South America than with Native Americans elsewhere, providing further support for population substructure in Asia [8] and suggesting that this persisted from 40,000 years ago until the colonization of the Americas. Our study of the Tianyuan individual highlights the complex migration and subdivision of early human populations in Eurasia.


Asunto(s)
ADN Antiguo/análisis , Genoma Humano , Migración Humana , Arqueología , Variación Biológica Poblacional , China , Humanos , Masculino , Filogenia
18.
Elife ; 62017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28585920

RESUMEN

The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods ~120 and ~244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.


Asunto(s)
Elefantes/genética , Evolución Molecular , Fósiles , Genómica , Animales , ADN Mitocondrial/genética , Genoma Mitocondrial , Filogenia , Análisis de Secuencia de ADN
19.
Science ; 356(6338): 605-608, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28450384

RESUMEN

Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found.


Asunto(s)
ADN Antiguo/aislamiento & purificación , ADN Mitocondrial/aislamiento & purificación , Hominidae/clasificación , Hominidae/genética , Animales , Cuevas , ADN Antiguo/análisis , ADN Mitocondrial/análisis , Europa (Continente) , Fósiles , Sedimentos Geológicos/química , Análisis de Secuencia de ADN
20.
Nature ; 534(7606): 200-5, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27135931

RESUMEN

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.


Asunto(s)
Cubierta de Hielo , Población Blanca/genética , Población Blanca/historia , Animales , Evolución Biológica , ADN/análisis , ADN/genética , ADN/aislamiento & purificación , Europa (Continente) , Femenino , Efecto Fundador , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Masculino , Medio Oriente , Hombre de Neandertal/genética , Filogenia , Dinámica Poblacional , Selección Genética , Análisis de Secuencia de ADN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...