Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Blood ; 139(25): 3617-3629, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35344582

RESUMEN

Genetic alterations in the DNA damage response (DDR) pathway are a frequent mechanism of resistance to chemoimmunotherapy (CIT) in B-cell malignancies. We have previously shown that the synergy of CIT relies on secretory crosstalk elicited by chemotherapy between the tumor cells and macrophages. Here, we show that loss of multiple different members of the DDR pathway inhibits macrophage phagocytic capacity in vitro and in vivo. Particularly, loss of TP53 led to decreased phagocytic capacity ex vivo across multiple B-cell malignancies. We demonstrate via in vivo cyclophosphamide treatment using the Eµ-TCL1 mouse model that loss of macrophage phagocytic capacity in Tp53-deleted leukemia is driven by a significant downregulation of a phagocytic transcriptomic signature using small conditional RNA sequencing. By analyzing the tumor B-cell proteome, we identified a TP53-specific upregulation of proteins associated with extracellular vesicles (EVs). We abrogated EV biogenesis in tumor B-cells via clustered regularly interspaced short palindromic repeats (CRISPR)-knockout (KO) of RAB27A and confirmed that the EVs from TP53-deleted lymphoma cells were responsible for the reduced phagocytic capacity and the in vivo CIT resistance. Furthermore, we observed that TP53 loss led to an upregulation of both PD-L1 cell surface expression and secretion of EVs by lymphoma cells. Disruption of EV bound PD-L1 by anti-PD-L1 antibodies or PD-L1 CRISPR-KO improved macrophage phagocytic capacity and in vivo therapy response. Thus, we demonstrate enhanced EV release and increased PD-L1 expression in TP53-deficient B-cell lymphomas as novel mechanisms of macrophage function alteration in CIT resistance. This study indicates the use of checkpoint inhibition in the combination treatment of B-cell malignancies with TP53 loss.


Asunto(s)
Antígeno B7-H1 , Vesículas Extracelulares , Linfoma de Células B , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Linfoma/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Macrófagos/metabolismo , Ratones , Neoplasias/metabolismo
2.
Blood ; 137(5): 646-660, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538798

RESUMEN

Richter's transformation (RT) is an aggressive lymphoma that occurs upon progression from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a significant proportion of RT cases lack CLL phase-associated events. Here, we report that high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the murine Eµ-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly reduced survival and an aggressive lymphoma phenotype. In the absence of recurrent mutations, we identified a profile of genomic aberrations intermediate between CLL and diffuse large B-cell lymphoma. Multiomics assessment by phosphoproteomic/proteomic and single-cell transcriptomic profiles of this Akt-induced murine RT revealed an S100 protein-defined subcluster of highly aggressive lymphoma cells that developed from CLL cells, through activation of Notch via Notch ligand expressed by T cells. Constitutively active Notch1 similarly induced RT of murine CLL. We identify Akt activation as an initiator of CLL transformation toward aggressive lymphoma by inducing Notch signaling between RT cells and microenvironmental T cells.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/patología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptor Notch1/fisiología , Animales , Evolución Clonal , Progresión de la Enfermedad , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Genes p53 , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/fisiopatología , Linfocitos Infiltrantes de Tumor/inmunología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/fisiología , Transcriptoma , Microambiente Tumoral , Proteína p53 Supresora de Tumor/fisiología , Regulación hacia Arriba
3.
Cancers (Basel) ; 12(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824276

RESUMEN

Targeted inhibition of Bruton's Tyrosine Kinase (BTK) with ibrutinib and other agents has become important treatment options in chronic lymphocytic leukemia, Waldenström's Macroglobulinemia, Mantle cell lymphoma, and non-GCB DLBCL. Clinical trials combining small molecule inhibitors with monoclonal antibodies have been initiated at rapid pace, with the biological understanding between their synergistic interactions lagging behind. Here, we have evaluated the synergy between BTK inhibitors and monoclonal antibody therapy via macrophage mediated antibody dependent cellular phagocytosis (ADCP). Initially, we observed increased ADCP with ibrutinib, whilst second generation BTK inhibitors failed to synergistically interact with monoclonal antibody treatment. Kinase activity profiling under BTK inhibition identified significant loss of Janus Kinase 2 (JAK2) only under ibrutinib treatment. We validated this potential off-target effect via JAK inhibition in vitro as well as with CRISPR/Cas9 JAK2-/- experiments in vivo, showing increased ADCP and prolonged survival, respectively. This data supports inhibition of the JAK-STAT (Signal Transducers and Activators of Transcription) signaling pathway in B-cell malignancies in combination with monoclonal antibody therapy to increase macrophage-mediated immune responses.

4.
Gene ; 586(1): 62-8, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27040980

RESUMEN

Androgen-induced gene 1 (AIG1) is a transmembrane protein implicated with survival (its expression level was shown to correlate with the survival of patients suffering from hepatocellular carcinoma) and Ca(2+) signaling (over-expression of AIG1 increased transcription mediated by the Ca(2+)-dependent nuclear factor of activated T cells). We aimed to shed light on this less-studied protein and investigated its tissue expression, genomic organization, intracellular localization and membrane topology as well as its effects on cell death susceptibility and the Ca(2+) content of the endoplasmic reticulum. Immunoblotting of mouse tissues demonstrated highest expression of AIG1 in the liver, lung and heart. AIG1 has a complex genomic organization and expresses several splice variants in a tissue-dependent manner. Analyzing the topology of AIG1 in the ER membrane using a protease-protection assay suggested that AIG has five transmembrane domains with a luminal N- and cytosolic C-terminus and a hydrophobic stretch between the third and fourth membrane domain that does not cross the membrane. AIG1 over-expression slightly increased susceptibility to oxidative stress, which correlated with an increased ER Ca(2+) concentration in two different cell lines. Together, these results indicate that AIG1 plays a role in the control of the intracellular Ca(2+) concentration and cell death susceptibility.


Asunto(s)
Calcio/metabolismo , Muerte Celular , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Estrés Oxidativo , Empalme Alternativo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Expresión Génica , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Dominios Proteicos , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA