Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Parkinsons Dis ; 5: 5, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30963107

RESUMEN

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the LRRK2-G2019S mutation recapitulate disease-relevant phenotypes. Automated high-content image analysis shows a decrease in the number and complexity of mDANs in LRRK2-G2019S compared to control organoids. The floor plate marker FOXA2, required for mDAN generation, increases in PD patient-derived midbrain organoids, suggesting a neurodevelopmental defect in mDANs expressing LRRK2-G2019S. Thus, we provide a robust method to reproducibly generate 3D human midbrain organoids containing mDANs to investigate PD-relevant patho-mechanisms.

2.
Cell Death Differ ; 26(4): 728-740, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29899379

RESUMEN

The balance between stem cell maintenance and differentiation has been proposed to depend on antagonizing ubiquitination and deubiquitination reactions of key stem cell transcription factors (SCTFs) mediated by pairs of E3 ubiquitin ligases and deubiquitinating enzymes. Accordingly, increased ubiquitination results in proteasomal degradation of the SCTF, thereby inducing cellular differentiation, whereas increased deubiquitination stabilizes the SCTF, leading to maintenance of the stem cell fate. In neural stem cells, one of the key SCTFs is c-Myc. Previously, it has been shown that c-Myc is ubiquitinated by the E3 ligase TRIM32, thereby targeting c-Myc for proteasomal degradation and inducing neuronal differentiation. Accordingly, TRIM32 becomes upregulated during adult neurogenesis. This upregulation is accompanied by subcellular translocation of TRIM32 from the cytoplasm of neuroblasts to the nucleus of neurons. However, we observed that a subpopulation of proliferative type C cells already contains nuclear TRIM32. As these cells do not undergo neuronal differentiation, despite containing TRIM32 in the nucleus, where it can ubiquitinate c-Myc, we hypothesize that antagonizing factors, specifically deubiquitinating enzymes, are present in these particular cells. Here we show that TRIM32 associates with the deubiquitination enzyme USP7, which previously has been implicated in neural stem cell maintenance. USP7 and TRIM32 were found to exhibit a dynamic and partially overlapping expression pattern during neuronal differentiation both in vitro and in vivo. Most importantly, we are able to demonstrate that USP7 deubiquitinates and thereby stabilizes c-Myc and that this function is required to maintain neural stem cell fate. Accordingly, we propose the balanced ubiquitination and deubiquitination of c-Myc by TRIM32 and USP7 as a novel mechanism for stem cell fate determination.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Animales , Núcleo Celular/metabolismo , Proliferación Celular/genética , Células Cultivadas , Ontología de Genes , Células HEK293 , Humanos , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/enzimología , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/genética , Ubiquitinación
3.
Mol Neurobiol ; 55(4): 3490-3498, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28508149

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Accumulating evidences suggest that PD might have a strong neurodevelopmental component. Among the genetic cases, mutations in the leucine-rich repeat kinase 2 (LRRK2) are well known to be disease causing. Although the molecular mechanism of the pathogenic LRRK2 function is not fully clear, inhibition of microRNA (miRNA) activity has been suggested to be among the pathogenic LRRK2 targets. Here, we demonstrate that the miRNA activity inhibition function of pathogenic LRRK2 is directly antagonized by the neuronal cell fate determinant TRIM32. These findings suggest that TRIM32 might be a modifier for PD and could be a novel therapeutic target.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , MicroARNs/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Argonautas/metabolismo , Diferenciación Celular , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Neuronas/metabolismo , Neuronas/patología , Unión Proteica , Complejo Silenciador Inducido por ARN/metabolismo
4.
Mol Neurobiol ; 54(6): 4257-4270, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27339877

RESUMEN

Alpha-synuclein is an abundant neuronal protein which has been associated with physiological processes like synaptic function, neurogenesis, and neuronal differentiation but also with pathological neurodegeneration. Indeed, alpha-synuclein (snca) is one of the major genes implicated in Parkinson's disease (PD). However, little is known about the regulation of alpha-synuclein expression. Unveiling the mechanisms that control its regulation is of high importance, as it will enable to further investigate and comprehend the physiological role of alpha-synuclein as well as its potential contribution in the aetiology of PD. Previously, we have shown that the protein TRIM32 regulates fate specification of neural stem cells. Here, we investigated the impact of TRIM32 on snca expression regulation in vitro and in vivo in neural stem cells and neurons. We demonstrated that TRIM32 is positively influencing snca expression in a neuronal cell line, while the absence of TRIM32 is causing deregulated levels of snca transcripts. Finally, we provided evidence that TRIM32 binds to the promoter region of snca, suggesting a novel mechanism of its transcriptional regulation. On the one hand, the presented data link the PD-associated gene alpha-synuclein to the neuronal cell fate determinant TRIM32 and thereby support the concept that PD is a neurodevelopmental disorder. On the other hand, they imply that defects in olfactory bulb adult neurogenesis might contribute to early PD-associated non-motor symptoms like hyposmia.


Asunto(s)
Linaje de la Célula/genética , Regulación de la Expresión Génica , Neuronas/patología , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Regulación hacia Abajo/genética , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Tumoral p73/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo
5.
Stem Cell Reports ; 7(3): 307-315, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27546532

RESUMEN

Identification of cell-fate determinants for directing stem cell differentiation remains a challenge. Moreover, little is known about how cell-fate determinants are regulated in functionally important subnetworks in large gene-regulatory networks (i.e., GRN motifs). Here we propose a model of stem cell differentiation in which cell-fate determinants work synergistically to determine different cellular identities, and reside in a class of GRN motifs known as feedback loops. Based on this model, we develop a computational method that can systematically predict cell-fate determinants and their GRN motifs. The method was able to recapitulate experimentally validated cell-fate determinants, and validation of two predicted cell-fate determinants confirmed that overexpression of ESR1 and RUNX2 in mouse neural stem cells induces neuronal and astrocyte differentiation, respectively. Thus, the presented GRN-based model of stem cell differentiation and computational method can guide differentiation experiments in stem cell research and regenerative medicine.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Modelos Biológicos , Células Madre/citología , Células Madre/metabolismo , Algoritmos , Animales , Astrocitos/citología , Astrocitos/metabolismo , Biología Computacional/métodos , Simulación por Computador , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Bases de Datos Genéticas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Receptor alfa de Estrógeno/metabolismo , Ratones , Neuronas/citología , Neuronas/metabolismo
6.
Nucleic Acids Res ; 43(5): 2638-54, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25722370

RESUMEN

In neural stem cells (NSCs), the balance between stem cell maintenance and neuronal differentiation depends on cell-fate determinants such as TRIM32. Previously, we have shown that TRIM32 associates with the RNA-induced silencing complex and increases the activity of microRNAs such as Let-7a. However, the exact mechanism of microRNA regulation by TRIM32 during neuronal differentiation has yet to be elucidated. Here, we used a mass spectrometry approach to identify novel protein-protein interaction partners of TRIM32 during neuronal differentiation. We found that TRIM32 associates with proteins involved in neurogenesis and RNA-related processes, such as the RNA helicase DDX6, which has been implicated in microRNA regulation. We demonstrate, that DDX6 colocalizes with TRIM32 in NSCs and neurons and that it increases the activity of Let-7a. Furthermore, we provide evidence that DDX6 is necessary and sufficient for neuronal differentiation and that it functions in cooperation with TRIM32.


Asunto(s)
Diferenciación Celular/genética , ARN Helicasas DEAD-box/genética , MicroARNs/genética , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Células Cultivadas , ARN Helicasas DEAD-box/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Immunoblotting , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Microscopía Fluorescente , Células 3T3 NIH , Neurogénesis/genética , Unión Proteica , Mapas de Interacción de Proteínas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Ubiquitina-Proteína Ligasas/metabolismo
7.
Stem Cells Dev ; 22(18): 2487-96, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23600457

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause familial as well as sporadic Parkinson's disease (PD) that is characterized by an age-dependent degeneration of dopaminergic neurons. LRRK2 is strongly expressed in neural stem cells (NSCs), but still the exact molecular function of LRRK2 in these cells remains unknown. By performing a systemic analysis of the gene expression profile of LRRK2-deficient NSCs, we found that the expression of several PD-associated genes, such as oxidation and reduction in mitochondria, are deregulated on LRRK2 absence. Our data, indeed, indicate that LRRK2 regulates the level of cellular oxidative stress and thereby influences the survival of NSCs. Furthermore, the lack of LRRK2 leads to an up-regulation of neuronal differentiation-inducing processes, including the Let-7a pathway. On the other hand, the constitutive mutant of LRRK2(R1441G), known to cause PD, leads to down-regulation of the same pathway. In agreement with the function of Let-7a during neuronal differentiation, LRRK2-deficient NSCs differentiate faster than wild-type cells, while LRRK2(R1441G)-expressing NSCs show impaired neuronal differentiation. These results might help better characterize the molecular mechanisms underlying the role of LRRK2 in NSCs and would further improve potential cell-replacement strategies as well as drug discovery approaches.


Asunto(s)
Diferenciación Celular/genética , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Secuencia de Bases , Supervivencia Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Regulación hacia Abajo , Perfilación de la Expresión Génica , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Células-Madre Neurales/citología , Oxidación-Reducción , Estrés Oxidativo/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Proteínas Serina-Treonina Quinasas/deficiencia , Análisis de Secuencia de ADN , Regulación hacia Arriba
8.
PLoS One ; 7(1): e30445, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22299041

RESUMEN

Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , Músculos/fisiología , Regeneración/genética , Ubiquitina-Proteína Ligasas/fisiología , Células Madre Adultas/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Femenino , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculos/metabolismo , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...